USER MANUAL
Megapixel IP Cameras and AV100 Video System Software

Rev 02
July 28, 2008
support@arecontvision.com

AV100 SOFTWARE IS PROVIDED ON AS-IS BASIS. ARECONT VISION, LLC DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ARECONT VISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Table of Contents

Chapter 1. Introduction
- Product Overview
- Product Contents
- System Requirements
- Standard Performance
- Network Switch or Router
- Recommended Accessories
- Introduction
- Connectors
- Power
- Housing and Mounting
- Network Cabling
- Optics
- Manual Lenses
- Using Manual Iris Lenses
- Auto-Iris Lenses
- Using Auto-Iris Lenses
- Monitoring Iris Status with AV Video System
- Accessing AV Camera

Chapter 2. Video Surveillance Software
- Software Installation
- Configure Firewall
- AV Application Manager
- Camera Installer
- Basic Mode
- Advanced Mode
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating AV Video System AV100</td>
<td>19</td>
</tr>
<tr>
<td>Toolbar</td>
<td>20</td>
</tr>
<tr>
<td>Settings</td>
<td>22</td>
</tr>
<tr>
<td>Selecting Full/Reduced Resolution and Zoom</td>
<td>23</td>
</tr>
<tr>
<td>Region of Interest (ROI)</td>
<td>24</td>
</tr>
<tr>
<td>Exposure</td>
<td>26</td>
</tr>
<tr>
<td>Single Capture</td>
<td>27</td>
</tr>
<tr>
<td>Image Quality</td>
<td>29</td>
</tr>
<tr>
<td>Rate Control</td>
<td>30</td>
</tr>
<tr>
<td>Archive</td>
<td>31</td>
</tr>
<tr>
<td>Motion Detection</td>
<td>32</td>
</tr>
<tr>
<td>Save To</td>
<td>34</td>
</tr>
<tr>
<td>Advanced</td>
<td>35</td>
</tr>
<tr>
<td>Authentication</td>
<td>36</td>
</tr>
<tr>
<td>Remote Viewing</td>
<td>37</td>
</tr>
<tr>
<td>Day/Night</td>
<td>38</td>
</tr>
<tr>
<td>Auto-Iris</td>
<td>39</td>
</tr>
<tr>
<td>Right-Click Menu</td>
<td>40</td>
</tr>
<tr>
<td>Language Selection</td>
<td>42</td>
</tr>
<tr>
<td>Browsing Archives</td>
<td>42</td>
</tr>
<tr>
<td>AVI Maker – Making Video Clips from the Archive</td>
<td>44</td>
</tr>
<tr>
<td>Viewing Your Recorded Video</td>
<td>47</td>
</tr>
<tr>
<td>Firmware Loader – Upgrading Camera Firmware/Hardware in the Field</td>
<td>48</td>
</tr>
<tr>
<td>Chapter 3. HTTP Access</td>
<td>50</td>
</tr>
<tr>
<td>Single and Dual-Sensor Camera Models</td>
<td>50</td>
</tr>
<tr>
<td>On-Camera Web Page</td>
<td>50</td>
</tr>
<tr>
<td>HTTP Request Format for Receiving Individual JPEG Frames</td>
<td>51</td>
</tr>
<tr>
<td>HTTP Request Format for Continuous MJPEG Video Streaming</td>
<td>51</td>
</tr>
<tr>
<td>HTTP Request Format for Receiving Individual H.264 Frames</td>
<td>53</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>RTSP Request Format for Continuous H.264 Video Streaming</td>
<td>55</td>
</tr>
<tr>
<td>Basic Camera Control Parameters</td>
<td>57</td>
</tr>
<tr>
<td>Parameters Specific to AV3130 Day/Night Cameras</td>
<td>59</td>
</tr>
<tr>
<td>Motion Detection Control Parameters</td>
<td>60</td>
</tr>
<tr>
<td>Access Control</td>
<td>62</td>
</tr>
<tr>
<td>HTTP/1.1 vs. HTTP/1.0</td>
<td>64</td>
</tr>
<tr>
<td>HTTP Access of Panoramic Cameras</td>
<td>65</td>
</tr>
<tr>
<td>Requesting Images from Panoramic Cameras</td>
<td>65</td>
</tr>
<tr>
<td>Getting and Setting Camera Parameters</td>
<td>67</td>
</tr>
<tr>
<td>Chapter 4. Troubleshooting and Useful Tips</td>
<td>72</td>
</tr>
<tr>
<td>Connecting Directly to Laptop or PC</td>
<td>72</td>
</tr>
<tr>
<td>Switches and Routers</td>
<td>72</td>
</tr>
<tr>
<td>Low Sharpness</td>
<td>72</td>
</tr>
<tr>
<td>Frequently Asked Questions</td>
<td>73</td>
</tr>
<tr>
<td>Chapter 5. Regulatory Compliance</td>
<td>81</td>
</tr>
<tr>
<td>FCC Compliance Statement</td>
<td>81</td>
</tr>
<tr>
<td>Terms and Conditions of Sale</td>
<td>81</td>
</tr>
</tbody>
</table>
Chapter I - Introduction

Product Overview

AV100 supports full-motion, real-time, multi-camera viewing and policy-based archiving, remote access to live and archived video via Internet Explorer, post-event zooming from digital archives, simultaneous viewing of full-field of view and multiple zoomed images and a multitude of other features that take advantage of unique functionality and performance of Arecont Vision cameras.

To complement its line of megapixel cameras, Arecont Vision offers full-featured video surveillance software, AV100.

A typical system consists of a number of cameras connected over the local or wide area network to server PC running AV100 software. To achieve full motion archival rate, the server may be placed locally to the cameras so that the interconnecting LAN has sufficient bandwidth and small roundtrip delay between cameras and the server PC.

A remote PC can connect to the Server PC over a slower network connection, such as Internet. Once connected, the remote PC can display live video stream and browse archives using Internet Explorer. Note that when connected to AV100 software, the remote PC does not connect to cameras directly, but rather to the server PC on which AV100 is running.

Product Contents

The AV Megapixel Camera system consists of the following:

- Arecont Vision camera(s)
- CD with NVR software
Inspect the package and contents for visible damage. If any components are damaged or missing, do not use the unit; contact the supplier immediately. If you need to return the unit, you must ship it in the original box.

System Requirements

We recommend a dedicated PC to receive the image streams from cameras for archiving and display. The suggested minimum computer requirements are detailed for standard and high performance installations.

Standard Performance

24fps at full resolution for AV2100:
- CPU: Core 2 Duo 2Ghz
- RAM: 1 GB
- Video Card: NVIDIA, 128 MB RAM
- Network card: 100 base-T, 2 network cards – one for cameras and one for remote viewing

A PC with single, slower CPU is sufficient in the case when images are to be archived, but not displayed.

HDD size depends according to the desired capacity of the video archives (approximately 200Kbytes/image). As an example, two 400GB drives will yield approximately 6 days of archiving capacity for an 8-camera system recording at 1 frame per second.

Network PoE Switch or PoE Router

Using a 100 Mbps Ethernet Switch with PoE ports or a Router with PoE ports is recommended. Gigabit Ethernet Switch with PoE ports for multiple camera connections is highly recommended. Simple hubs do not provide collision management and are not suitable for multi-camera AV system.

Suggested models:
- Netgear ProSafe 8PT 100Base-TX Switch with PoE #FS108PNA, 10/100Base-TX w/4 PoE 100Base-TX (www.netgear.com)
- Netgear ProSafe 24+2 Gigabit Switch with PoE, 1 Gigabit output w/12 PoE, 100Base-TX (www.netgear.com)
- D-Link Web Smart #DES-1316 (POE Switch/Hub) 10/100Base-TX, 8 PoE ports and 8 non-PoE ports, True IEEE 802.3af (www.compuplus.com)
- TRENDnet #TPE-S88 (POE Switch/Hub, www.trendnet.com) 10/100Base-TX, 8 PoE ports and 8 non-PoE ports, True IEEE 802.3af (www.provantage.com)
- PowerDsine #PD-6001/AC (PoE Single port hub, www.powerdsine.com) 10/100Base-TX, Single Midspan POE port, True IEEE 802.3af (www.provantage.com)
PoE network equipment must be CE marked for use in European Community. Note that the cameras are
designed for use with indoor network cabling only.

Recommended Accessories

We recommend the following monitors:

- Dell UltraSharp 2405FPW
 24-inch Wide Aspect Flat Panel LCD Monitor with Height Adjustable Stand
 (www.dell.com)
- Samsung’s 243T, 24 Inch LCD Display (www.samsung.com)

Introduction - Camera Reference

AV1300/1305, AV2100/2105, AV3100/3105, AV3130, AV5100/5105, AV8180 and AV8360 are megapixel
resolution IP cameras capable of delivering crisp, low-noise images at video frame rate.

AV1300/1305 is a 1.3-megapixel resolution camera with a maximum resolution of 1280 by 1024 and
achieving a maximum frame rate of 30 fps. AV1300 supports MJPEG compression only. AV1305
supports both MJPEG and H.264 (MPEG4 Part 10) compression.

AV2100/2105 is a 2-megapixel resolution camera with a maximum resolution of 1600 by 1200 and
achieving a maximum frame rate of 24 fps. AV2100 supports MJPEG compression only. AV2105
supports both MJPEG and H.264 (MPEG4 Part 10) compression.

AV3100/3105 is a 3-megapixel resolution camera with a maximum resolution is 2048 by 1536. AV3100 is
typically viewed at 1920 by 1200 resolution with the frame rate up to 20 fps. AV3100 supports MJPEG
compression only. AV3105 supports both MJPEG and H.264 (MPEG4 Part 10) compression.

AV3130 is a dual-sensor, day-night camera featuring a 3-megapixel color sensor paired with a 1.3-
megapixel monochrome sensor sensitive to near infrared illumination. When the scene is well illuminated
the 3-megapixel sensor is selected to deliver color images of up to 2048x1536 pixels. To provide
seamless transition between day and night modes the color sensor is set to default resolution of
1920x1200 pixels. In low-light conditions AV3130 can automatically switch to the 1.3-megapixel
(1280x1024) monochrome sensor, enabling the delivery of clear imagery at illumination levels as low as
0.00 lux (infrared only). AV3130 typically delivers 20 fps in day mode at 1920x1200 and over 30 fps in
night mode.
AV5100/5105 is a 5-megapixel resolution camera. Its maximum resolution is 2592 by 1944. AV5100 is typically viewed at 2560 by 1600 resolution with the frame rate up to 12 fps. AV5100 supports MJPEG compression only. AV5105 supports both MJPEG and H.264 (MPEG4 Part 10) compression.

AV8180 is a quad-sensor 8-megapixel camera consisting of four 2-megapixel sensors and operating at up to 22 fps at 1600 by 1200 resolution. It is capable of providing 180 degree field of view.

AV8360 is a quad-sensor 8-megapixel panoramic camera consisting of four 2-megapixel sensors and operating at up to 22 fps at 1600 by 1200 resolution. It is capable of providing 360 degree field of view.

All cameras are equipped with LAN connector and can deliver image data at a maximum data rate of up to 55 Mbps. Images are sent over the network using TFTP, HTTP and RTSP (available for H.264 only) protocols.

All cameras feature:
- Automatic Exposure (AE) and Gain (AGC) control
- Automatic backlight compensation
- Automatic multi-matrix white balance
- 50/60Hz selectable flicker control
- Electronic Zoom, Pan and Tilt (PTZ)
- Programmable brightness, saturation, gamma, sharpness, windowing and decimation
- Simultaneous delivery of full-field view and zoomed images at video frame rate
- Up to eight simulations connections per camera
- Electronic image rotation by 180 degrees
- On board motion detection
- Optional auto iris
- Optional day/night IR switching filter
- Camera Correction

Connectors

All AV Megapixel cameras have the following connectors located on the rear panel of the camera housing:
- LAN connector, accepting a network UTP or STP cable carrying 100 Base-T. The LAN connector also accepts Power-over-Ethernet (PoE).
- Power terminals, accepting 15V-48V DC supply
- Optionally, a DC auto-iris connector. AV3130 does not support auto-iris and does not have this connector.
- Auxiliary input and output connector
Power

Power for all AV cameras can be supplied as follows:

- Via LAN connector according to IEEE 802.3af (PoE). For a list of recommended PoE switches, see “Network PoE Switch or Router PoE” on page 7.
- Via DC jack, 15V-48VDC, see power ratings below.

Power consumption will vary depending on the mode of operation. The maximum power consumption takes place when the camera is polled at a maximum frame rate and at full resolution.

The maximum power consumption is:

- AV1300, AV2100, AV3100, AV5100 -- 3 W
- AV1305, AV2105, AV3105, AV5105 -- 4 W
- AV3130 -- 3.2 W
- AV8360, AV8180 -- 7.8 W

Housing and Mounting

All AV camera models feature a durable aluminum housing that minimizes fire hazards. The housing is not hermetically sealed. The ambient temperature should be maintained between 0ºC and 50ºC (32ºF to 122ºF). The cameras used outdoors must have appropriate protective enclosures.

Cameras are mounted using a ¼” x 20 threaded hole at the bottom of the housing. When mounting the camera, make sure that the mounting screw is no longer than ¼”. The cameras are to be installed according to the applicable code and regulations. The mounting hardware should be able to support 1 lb camera (except AV8360 that weights 4lbs). Model AV3130 requires a 3” enclosure window; all other cameras can use most any outdoor housing.

Network Cabling

Category 5e cabling or better is recommended. All network cabling must be installed according to applicable codes and regulations.

Optics

All AV cameras should be used with a 1/2” or 2/3” megapixel-resolution lenses. AV3130 requires two manual iris lenses and has a limitation on lens diameter (<38mm). AV8360 is supplied with 4 preinstalled high-quality lenses megapixel-resolution lenses.
Manual Iris Lenses

A wide variety of C/CS mount lenses with megapixel resolution may be used with AV cameras. Note that all C-mount lenses require a 5mm adaptor ring. Some lenses may also require 0.4mm-0.8mm adjustment spacers.

Arecont Vision lens suggestions include:

- Arecont LENS4-10 (4mm -10mm)
- Computar H0514-MP (5mm), M0814-MP (8mm), M1214-MP (12mm), M1614-MP (16mm), M2514-MP (25mm), M5018-MP (50mm), HG2Z0414FC-MP (4mm - 8mm), M3Z1228C-MP (12mm - 36mm)
- Fujinon HF12.5SA-1 (12.5mm), Fujinon HF16SA-1 (16mm), Fujinon HF25SA-1 (25mm), HF35SA-1 (35mm), Fujinon HF50SA-1 (50mm), Fujinon HF75SA-1 (75mm)
- Fujinon DF6HA-1B (6mm), HF9HA-1B (9mm), HF12.5HA-1B (12.5mm), HF16HA-1B (16mm), HF25HA-1B (25mm), HF35HA-1B (35mm), HF50HA-1B (50mm), HF75HA-1B (75mm)
- Tamron 12VM1040ASI (10mm - 40mm)

Using Manual Iris Lenses

Choosing the lens correctly is very important for megapixel cameras. Poorly selected lenses may cause the image to appear blurry when the lens iris is fully open or closed too much.

To deliver sharp megapixel resolution images, it is recommended to:

- Use megapixel-resolution lenses
- Obtain best resolution and depth of focus by having the iris slightly closed

When setting up the camera, direct the camera at the scene, fully open the iris first, and then try closing the iris slightly. At some point the image will look it’s sharpest. However, do not close down the iris too much to the point where the image becomes too noisy due to insufficient light.

Auto-Iris Lenses

Standard DC auto-iris lenses can be used with AV1300AI, AV2100AI, AV3100AI, AV5100AI, AV1305AI, AV2105AI, AV3105AI and AV5105AI (cameras equipped with the auto-iris feature).

Arecont Vision recommends the following high-resolution optics:

- Computar HG2Z0414FC-MP 4mm-8mm
- Tamron 12VM412ASIR-SQ 4mm-12mm
- Tamron 12VG1040ASIR-SQ 10mm-40mm
Using Auto-Iris Lenses

AV1300AI, AV2100AI, AV3100AI, and AV5100AI are available with DC auto-iris option.

To use the DC auto-iris lens:

- Attach the lens to the AV camera.
- Plug in the lens cable into the connector on the back of the camera. Make sure that the lens cable is long enough. Many DC lenses are available with short and long cable options.

The camera will automatically detect the presence of an auto-iris DC lens and start using it.

Auto-iris lens operation typically proceeds as follows:

- If illumination is sufficient, the camera will close the iris within half-a-minute.
- When the iris is closed, the image should become visibly sharper. As the iris is gradually closed the image brightness may fluctuate slightly.

Monitoring Auto-Iris Status with AV Video System

You can monitor the state of the auto-iris in AV Video System “Settings” dialog (see “Operating AV Video System” on pg. 23 for details).

Accessing AV Cameras

AV Cameras can be accessed and controlled by means of:

- AV100 Video System software
- Third-party software utilizing Arecont Vision camera SDK (Software Developer Kit)
- HTTP requests issued from Microsoft Internet Explorer, Mozilla Firefox, and other web browsers
- RTSP-capable media players, such as Apple QuickTime, VLC, or other third party RTSP software (for camera models supporting H.264 compression)
Chapter II - AV100 Video Surveillance Software

Software Installation

To install AV100 video surveillance software:
1. Make sure your Windows XP/Vista account has Administrative privileges.
2. Open "Control Panel\Add or Remove Programs", remove old versions of AV Video System software if any.
3. Turn off all Anti-Virus Software and Windows Firewall.
4. Run Setup.exe and follow the directions to complete the installation.
5. If using Windows Vista, users must navigate to installation directory, open My Computer\C Drive\ProgramFile\ArecontVision\VideoSurveillance\AVInstaller.exe (type choose Application).
 Right-click on this file named “AVInstaller.exe”, choose “properties -> Compatibility -> Privilege Level” and enable the “Run this program as an administrator” option.

Setup process installs software and places a shortcut “Arecont Vision Application Manager” on the desktop and creates a group “Arecont Vision/AV Video System” in the Start menu.

Configure Firewall

As you start AV applications, your PC may prompt you to permit access to the network.

AV Video System includes two applications that need access to the network:
- AVInstaller.exe: the camera finding and installation program
- LocalMachine.exe: the viewing and archiving program

Both executables are located in the AV installation folder. You should grant access to these two applications when the firewall prompts you.
For example:

For older version of Norton Internet Security
Select Permit Always and click Ok.

Figure 2. Older version of Norton Internet Security

![Older version of Norton Internet Security](image)

For newer version of Norton Internet Security (Figure 3), go to Settings->Personal Firewall (under Web Browsing) and select Turn Off.

Figure 3. Newer version of Norton Internet Security

![Newer version of Norton Internet Security](image)

For McAfee Personal Firewall
Click Grant Access.

McAfee Personal Firewall Plus

![McAfee Personal Firewall Plus](image)

The application LocalMachine has changed since you first gave it access to the Internet. Do you still want to let it access the Internet?

Path: C:\Program Files\Arecont Vision\Video Surveillance \LocalMachine.exe

I want to...
- Grant Access
- Block: All Access

Does not recognize this application.
Tell McAfee about this program.
If you are using Windows XP firewall, follow these instructions:

1. Click the Windows Start button and select Control Panel>Windows firewall.
2. Windows Firewall settings dialog will appear. If the firewall is on, make sure Don’t allow exceptions is unchecked (Figure 5).
3. Click “Exceptions” tab. Make sure “AV Manager”, “AV Video System” and “AV Installer” appear in the list of programs and services and have a checkmark next to them (Figure 6). If these applications are not in the list, click Add Program button.
4. Find “AV Installer” in the list of programs and click Ok. Repeat the same steps for “AV Video System”.
5. Click Ok to close the Windows Firewall dialog.
AV Application Manager

After the software installation is complete, a shortcut to the AV Application Manager will appear on the user’s Desktop. All programs and utilities comprising the AV Video System can be accessed via AV Application Manager. The standard items include Camera Installer, Video System, and AVI Maker. The optional Firmware Loader is not included in the installation, but is available upon request. It will appear in the Application Manager as shown below (figure 8) by placing the FirmwareLoader.exe in "Arecont Vision\Video Surveillance" folder (C:\Program Files\Arecont Vision\Video Surveillance).

Figure 8. Application manager

The AV Application Manager selections include:

- **Camera Installer** - setup cameras (see pg.15).
- **Video System** - watch live video (see pg.19).
- **AVI Maker** - make video clips from archive (see pg.44).
- **Camera Upgrade** - upgrade cameras (see pg.48).

Camera Installer

Camera Installer allows to find all AV cameras that are present on the local area network, assign IP addresses to detected cameras, and to verify that the cameras are accessible and operational. The assigned IP address is stored on camera, and maintained when the power is off. The camera cannot change its own IP address – it can only be changed by a computer running AV Camera Installer, or by third party software, or via a web browser using HTTP commands.

Camera Installer supports two modes of operation – Basic and Advanced. To start the Camera Installer press the Run button under **Camera Installer**.
Basic Mode

In this mode Camera Installer detects all AV cameras that can be reached by the broadcast request sent over the network by the computer running the Camera Installer. It automatically assigns IP addresses to the cameras, selecting those addresses that belong to the same sub-network as the computer running Camera Installer, and that are not assigned to other network devices. To detect and install the cameras automatically, press Install Cameras button. The installer will find, configure and verify the operability of the cameras. Once the installation is completed, the list of newly installed cameras will appear in the top panel with the result “Installed, online”. The list can be sorted by the MAC address or IP address by clicking on the respective column name. The list may also include previously installed cameras that could be listed as “Installed, online” or “Installed, offline”, depending on whether the camera is still accessible. The installer offers a mechanism to protect previously installed cameras (if any) from accidental changes of their IP address. To change the IP address manually, or type in a description of the camera (which will be stored on camera) double click on the IP address of the camera and make the changes. Press **Save/Exit** button to save the installation information and exit the Camera Installer.

Figure 9. Basic mode
Advanced Mode

In this mode the user has the ability to manually control camera installation, in contrast with the basic mode where the installation is performed automatically. In the advanced mode the installer offers a mechanism to protect previously installed cameras (if any) from accidental changes of their IP address. To access **Advanced Mode** on your menu bar select **Mode**, then select **Advanced**. The Advanced Features can be displayed by clicking on **Show Advanced Features**. To hide this options click again (Figure 10).

The “Advanced” mode provides the following Camera Installer functions:

Find Cameras – this function searches for all AV cameras that are present on the local network, and are accessible by the broadcast request sent over the network by the Camera Installer. The top panel will list the previously installed cameras, if any, that may be marked as “Installed, online” or “Installed, offline”, and depending on whether the camera is still accessible. The bottom panel will list the newly found cameras, if any, that were not previously installed, with the result “Ready to install”.

Install Selected – this function installs the cameras highlighted by the user in the bottom panel, and verifies their operation in a similar way to the Install Cameras function in
Basic mode. After the installation process is completed, the installed cameras will appear in the top panel, while the cameras that were not highlighted will remain uninstalled in the bottom panel. If no cameras were highlighted, the Installer will not install any cameras listed in the bottom panel. The IP addresses of the installed cameras in the top panel will not be changed during the installation of the new cameras from the bottom panel. If the IP address of an installed camera was changed by another computer on the network, the Installer will display red alert message showing the previous and the changed IP address.

Unselect All – Remove highlighting from all cameras.

View Selected – Opens a web-browser to view live video from the camera and configure the camera settings using its webpage interface.

TIP: Double-clicking the selected camera in “Result” or “Model/Version” column has the same effect.

Edit Selected – Opens an **Advanced** dialog to edit the selected camera’s IP address and/or type in camera description to be stored on camera.

TIP: Double-clicking the selected camera in “IP address” or “Description” column has the same effect.

Remove Selected – Uninstall the cameras highlighted in the top panel: the removed cameras will appear in the bottom panel. Press Save/Exit to save changes.

Save / Exit – Saves the information about the installed cameras into a file “LocalMachine.ini” used by AV100 Video System, and exports a plaintext list of cameras into a file “CameraList.txt” for third party software, then exits the Installer.

Add Remote Units – The remote units are the cameras that may not be present on the local area network, or may not have been installed normally. Users should use this feature only if the camera’s MAC and an available IP addresses are known and the connectivity has been verified. Opens an **Advanced** dialog to add cameras manually.
Take and display video snapshots for all cameras that have been installed.

Sets the lock on camera to protect its IP Address from getting changed by the Installer or any software unless the lock is first removed, an asterisk will appear next to the IP Address of the locked camera. This option is available for firmware version 64116 or greater.

Unlocking the highlighted cameras will make their IP Address changeable; the asterisk next to the IP address will be removed.

Opens a command prompt window that turns off your Windows Firewall.

Opens a command prompt window that will configure your Windows Firewall to allow exceptions for Arecont Vision software.

Restores all camera settings to factory default, this will not change your camera IP Address.

Operating AV Video System AV100

Note: AV Video System requires a license file for each AV Camera that needs to archive using AV100. The license is tied to a unique camera’s MAC address. The license files are located in the C:\Program Files\Arecont Vision\Video Surveillance\license folder. However, for the evaluation purposes, AV100 will operate any AV cameras without a license.

After the cameras are successfully installed, the AV Video System can be activated by clicking Run button on Live video in the AV Application Manager.

The Arecont Vision logo screen will appear and hide automatically. The AV Video System software will start on its own after a few seconds. Shown below (Figure 11) is the AV Video System displaying live video from eight AV cameras. If minimize button is selected, the application will be placed onto the system tray of the Windows task bar.
Figure 11. Live video display

Toolbar

The toolbar of the AV Video System is located in the upper portion of the screen above the video display area. It contains the following icons:

- ![Icon](image) Turns on/off a drop-down list of the installed cameras. Individual cameras are disabled / enabled by left double-clicking on the camera number. When disabled, live video image from the disabled camera is replaced with a blue rectangle, and the camera number in the drop-down list is marked with a red cross.

- ![Icon](image) Displays the Settings menu (see Setting below).

- ![Icon](image) Enables a full screen display without the toolbar and menus.
Selects screen layout for viewing live/archived video from multiple cameras (from left to right): single camera layout, 2x2 camera layout; 3x3 camera layout; 4x4 camera layout; 10-camera layout with 2 large and 4x2 smaller images; 8-camera layout with 1 large, 3x1 and 1x4 smaller images; 13-camera layout with 1 large, 2x2 and 4x2 smaller images, 8-camera layout with 2x4 images for panoramic cameras, 10-camera layout with 2 large and 2x4 smaller images for regular and panoramic cameras. Depending on the chosen screen layout and the actual number of the installed cameras, the unused sections of the layout will be filled with a watermark image of the Arecont Vision logo.

Displays the Archive controls (see Browsing Archives below).

Takes a snapshot of live video or an archive. The snapshot is taken from the camera which is highlighted in the drop-down list of the installed cameras (see above). To highlight another camera, left-click on the camera number. To take the snapshot from all cameras, highlight “cameras” at the root (top) of the drop-down camera list. The snapshot file names contain the camera number, date and time of the snapshot. To locate/view the snapshots in the snapshot folder, right-click anywhere on screen, then select “photo”, “browse”. Alternatively, snapshots can be taken by right-clicking on the live video image, and then selecting “photo”, “save”. The directory path to the snapshot folder is specified in the Settings menu (see Settings), or using the Right-Click menu under “Save To” (see Right-Click menu). By default, this is the directory C:\Documents and Settings\(User Profile)\My Documents\My Pictures\Arecont Vision Photos.

Reports the current CPU usage and network usage. The first two LED bars on the left show the CPU usage and total network usage, respectively. The rest of LED bars show the network usage for each camera. The shown values are relative to the camera which uses the most bandwidth, displayed as 100% usage.
Settings

Settings menu (Figure 13) is displayed by clicking on the Settings button in the toolbar.

Settings menu is the top level menu for all settings provided in the AV Video System. Selecting one of the menu items opens up a lower level drop-down menu containing detailed settings and options. Depending on the camera model, some of the listed groups of settings may become unavailable (for example, Day/Night settings are available only for the AV3130 and DN cameras).

The lower level menus contain a “Camera” field that displays the camera number which the settings are applied to (Figure 14). The “Camera” field can be expanded to a drop-down list of all installed cameras to select from. The list includes an “All cameras” option to apply settings to all cameras.

NOTE: Selecting “Reset all” restores default settings for that camera.
Selecting Full / Reduced Resolution Display

AV cameras offer two options for image resolution: full and reduced (quarter) resolution where image resolution is reduced by a factor of two in horizontal and vertical dimension. Either resolution image can also be cropped to any size.

In order to save bandwidth the images are displayed at a reduced resolution. The format of the reduced resolution display is determined by the chosen screen layout (see Toolbar above on pg.20).

An individual camera image can be expanded to a full resolution display by double-clicking on the image. The full resolution image can be scaled back to its reduced resolution display by double-clicking on the image. Image size (in pixels) is displayed in the upper right corner of the image. An alternative mode of viewing the full resolution content is the zoom window (see ROI pg. 24).

Figure 12. Zoom window of screen snapshot
To zoom-in on a region of interest (ROI), draw a rectangle with the mouse (by right-clicking and holding down the mouse button). A separate zoom window will open up showing live video of the selected area at full resolution. The window size can be 320 by 240 pixels or greater. A green outline of the selected area will appear in the underlying reduced resolution image. Zooming in and out is performed by pressing Page Up and Page Down on the keyboard, or alternatively by rotating the mouse wheel (if available). Panning of the zoomed area is performed by dragging the green outline across the underlying camera image with the mouse (by right-clicking within the outline and holding down the mouse button), or alternatively with the keyboard arrow keys.

A maximum of three independent live regions of interest (ROI) windows can be opened per each camera.

NOTE: Panoramic cameras AV8360, AV8180 allow only one zoom window per channel and no ROI settings.

ROI (Region of Interest)

ROI can be configured by right-clicking on the green outline of the selected region of interest, and selecting “ROI” from the menu. A separate ROI options menu will open.

- **Lock this ROI** will freeze the ROI position in place and disable PTZ functions.
- **Delete this ROI** deletes the selected ROI, and is the same as clicking on the red X to close the window.
- **As New Camera** creates a new video window of the selected ROI as a virtual camera, and assigns new numbers to the cameras starting at ROI-101. The virtual camera video can be archived.
independently as any other camera, and its archival frame rate and video display frame rate could be independently adjusted.

- **Archive/ View Settings** opens up archival settings menu to set the rate of ROI archiving and viewing.

![ROI Settings](image)

NOTE: The actual number of frames per second / minute depends on camera model, image resolution, exposure settings, etc.

NOTE: If both boxes are checked, the displayed frame rate (the frame rate display is enabled by pressing Ctrl-S) will correspond to the view rate value.

- **As Exposure Reference** enables the on-camera auto-exposure system to use the brightness within the ROI to adjust the overall brightness of the entire camera image while ignoring the brightness outside of the ROI. A typical use of this feature is backlight compensation when the camera is facing a window where bright backlight makes objects in the foreground appear dark. By positioning ROI over the foreground object, and selecting “As Exposure Reference”, the foreground objects can be made brighter.

- **Restore Auto-Exposure** reverses the exposure control based on the ROI to a default exposure mode based on a default window in the center of the image and its background.
Exposure

Select Exposure (Figure 15) from the Setting menu to adjust exposure related settings, make sure to select the camera(s) it applies to:

Illumination is a group of options to adjust camera’s white balance computation to the illumination of the scene. “Automatic” enables the camera to adjust for illumination automatically.

Correction aids in flicker control in AV5100/05 camera models.

Lighting is to prevent flicker caused by oscillation frequency of the indoor lighting: European (50 Hz) or US/Japan (60 Hz).

Low Light Mode is a group of options to adjust camera’s operation under low light conditions:

 a) High Speed enables the shortest exposure, selectable from a drop-down list “Short Exposure” between 1 and 80 ms, and the maximum frame rate. This option will reduce motion blur, but may result in a noisier video due to a very short exposure time. To improve image quality under this setting provide ample scene illumination.

 b) Speed enables short exposure time of 10 ms, but under low light conditions may increase the exposure up to 80 ms.

 c) Balanced enables medium-duration exposures of 20 ms, but under low light conditions may increase the exposure up to 80 ms.

 d) Quality enables longer exposures of 40 ms, but under low light conditions may increase the exposure up to 200 ms. Motion blur may become high, but video will contain less noise under low light conditions.

 e) Moon Light enables very long exposures up to 500 ms if necessary.
Auto exposure On/Off is an option to enable/disable the on-camera automatic exposure control. Auto exposure maintains the user-set image brightness under changing lighting conditions.

Single Capture – please refer to the “Single Capture” section of this manual.

Single Capture

Single Capture mode is designed for applications where a single image is to be captured with an aid of an external flash triggered by the auxiliary output of the camera, while the capture itself is triggered by an external signal connected to the camera’s auxiliary input. Possible application areas include license plate capturing, access control systems, photo booths, etc.

The auxiliary input and output are accessible from the back panel, as shown below. Both the input and the output are electrically isolated from the rest of the camera’s electrical circuitry via general-purpose photo couplers. The input is additionally protected with a serial 250 Ohm resistor, and a debouncing circuit.
Electrical Characteristics:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(measured between + and – terminals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>2.9</td>
<td>6.3</td>
</tr>
<tr>
<td>OFF</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>Output current (mA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(measured between + and – terminals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Collector-Emitter Voltage (V)</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>OFF</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>

NOTE: The auxiliary input has a built-in hardware debouncing circuit. The duration of any input signal should be at least 5 ms to comply with the requirements of the debouncing circuit.

When single capture is enabled, the camera stops sending live video and enters an endless loop waiting for an external trigger event. In the absence of a trigger event, the camera responds to image requests from the network with a single short data packet.

When an event occurs, the camera responds to the most recent image request with the captured image. Single capture function is primarily designed for low-light applications where an external flash is needed. If there is sufficient light, the camera automatically switches to a regular High Speed mode with short exposure time, about 1 ~ 2 ms, without triggering the external flash.

To use the Single Capture function, the camera must be physically connected to an external trigger signal using the camera’s auxiliary input, and an external flash using the auxiliary output. The camera must be first calibrated by the user to adjust its parameters to the power of the external flash. The AV100 software offers automatic calibration procedure under “Exposure \ Single Capture” function group using “Calibrate Flash” button. The calibration process takes about 13 seconds, during which period the flash will be triggered 13 times. Once the calibration is finished, the user should verify the result of calibration by clicking the “Check Calibration” button. If the displayed number falls within the range 768 ~ 6144, the calibration is successful, otherwise the calibration has failed: the power of the flash needs to be adjusted up or down, or the camera’s iris has to be closed down or opened up. The lower the calibration number, the more there is room for automatic adjustment to darker-than-calibration conditions, and the higher is the image quality. To decrease the calibration number, the camera’s iris should be further opened up, or the power of the flash increased. However, if the calibration number equals 768, the image may be overexposed (too bright). To increase the calibration number, camera’s iris should be further closed down, or the power of the flash reduced.

NOTE: Calibration should be repeated every time when the flash power and/or duration is adjusted, or the camera’s iris is adjusted, or the camera’s sensor format is changed.
While in Single Capture mode, there is no live video displayed. In case of trigger events, AV100 software receives the captured images and stores them in the “photo” folder. If the checkbox “Add timestamp to photos” is checked, the captured images will display timestamps.

Image Quality

Select **Image Quality** from the Setting menu to open up a lower-level menu for adjusting image quality settings:

Compression Format offers two options for compressing the video: JPEG and H.264.

Frame Rate adjusts and displays the frame rate at which the software is requesting frames from the camera(s) for viewing only.

Quality adjusts the compression level for three display modes (applies to both JPEG and H.264 compression formats):

- “Full View” is to display and archive full resolution video.
- “Multi View” is to display multiple cameras at a reduced resolution.
- “Zoom View” is to display zoom windows.

Brightness adjusts image brightness.

Sharpness adjusts image sharpness.

Saturation adjusts image color saturation.

Red adjusts the red tint. This setting changes the target for camera’s automatic white balance computation. The effect is gradual: it takes 20-30 seconds for the camera to fully adjust to the new setting.

Gamma adjusts image contrast to reveal more or less shades of gray in the dark and light areas of the image (requires firmware 64116 and hardware 64107).

Size of Picture adjusts image cropping.

Rotate 180 is an option for flipping the image vertically and horizontally to rotate it 180 degrees.
Rate Control

Rate Control is an option available only for H.264 video streams, and has to be enabled individually per camera. If rate control is enabled, image quality setting under Image Quality is ignored: the camera will automatically adjust its video quality on a frame by frame basis to maintain the desired constant bit rate. The video quality may deteriorate at very low bit rate settings.

There are three options available for Rate Control:

- **Use bitrate control in full view video** enables constant bit rate for live video display at full resolution.
- **Use bitrate control in multi view video** enables constant bit rate for live video display at a reduced resolution when multiple cameras’ video is displayed.
- **Use bitrate control in archive video** enables constant bit rate for archiving.

The frame rate and bandwidth can be displayed by pressing Ctrl-S. If the last option is enabled, the displayed values are calculated by adding the archival bit rate to the display bit rate for full resolution or multi view resolution. In case the archival rate is set to maximum frame rate, the displayed values correspond to the archival rate settings.

NOTE: Certain values of bit rate may not be achievable depending on the camera resolution, image cropping, light conditions, exposure settings, and amount of motion.
Archive

Select Archive (Figure 17) from the Setting menu. Archive is a lower-level menu to set up video archival settings:

![Archive menu](image)

Resolution selects between archiving the video at full resolution or at a reduced (quarter) resolution.

Filter is a group of archiving options:

- **Save all frames** enables archiving the entire video stream received from the camera.
- **Save all and mark motion** enables saving the entire video stream and marking the frames when motion was detected for future archive browsing.
- **Save only motion** enables archiving only when motion was detected by the on-camera motion detector, and disables it in the absence of motion after a period of time specified under Continue after motion detected.

Frequency is a drop-down list of options for archive recording rate. The “Off” option disables the archive recording. The “Max” option sets the archive frequency limited only by the camera and the network (different for different camera models).

Continue after motion detected is a drop-down list of options for the duration of archiving after the motion was last detected by the on-camera motion detector, and the frame rate at which such recording is done.

NOTE: If new motion is detected during such after-motion recording, the rate of recording will revert to the one specified under “Frequency”.

Minimum free disk space set the minimum free disk space that is needed on a disk to start overwriting old video recordings. It is recommended that at least 5GB of free space is always available.
Motion Detection

Motion detection is achieved by analyzing inter-frame brightness changes on a pixel-by-pixel basis. There are two modes of Motion Detection supported in AV Video System: a software mode and an on-camera mode.

- The software mode performs motion detection by processing the images after they were transmitted from the camera to the computer. In contrast, the on-camera mode performs motion detection prior to transmitting the images to the computer. Thus, the on-camera motion detection allows to significantly reducing the CPU load and the network load when motion detection is enabled.

- Motion detection is enabled via the Archive settings when one of the two following options is selected: “Save all and mark motion” or “Save only motion”. If the Archive is enabled for “Save all frames” motion detection is disabled. The Enabled/Disabled status is displayed in the bottom right corner of the Motion Settings window.

- Motion detection is computed independently in multiple detection zones on a square grid. The largest grid supported for any AV camera model and image size is 8 by 8. The actual grid for any particular model is determined by the chosen zone size (a drop-down list in the lower right corner of the Motion Settings screen) and the camera's pixel resolution. The actual grid is displayed in the lower left corner. When motion is present, the Motion Settings window displays green marks (selectable between crosses and boxes) in the zones affected (Figure 18).

- A privacy mask can be set up to block motion detection in some of the zones by drawing a rectangle with the mouse (by left-clicking and holding down the mouse button). The privacy mask is marked with red crosses. A more complex shape can be created by drawing multiple rectangles. Erasing the mask (or part of the mask) is done by drawing a rectangle with the right mouse button.
Motion detection settings apply only to the camera which number is displayed in the Camera field on the left of the Motion Settings menu: use drop-down list to change the camera number. The settings are:

Detected by provides two options to select between the software motion detection and the on-camera motion detection.
Sensitivity is a group of controls to adjust motion detection computation:

- **Level** adjusts the inter-frame brightness change threshold that triggers motion detection. Lower settings may cause false motion detection due to noise.
- **Detail** adjusts the size of the detectable objects within each motion detection zone. Lower settings may cause false motion detection due to noise.
- **Limit** serves as a guard against false triggering due to a sudden overall change in lighting that would trigger motion detection in a large number of zones simultaneously. If the number of zones activated simultaneously is larger than “Limit”, motion detection will be blocked. This parameter cannot exceed the number of zones in the grid (displayed in the lower left corner of Motion Settings).

Save To

The lower level Save to menu allows to specify the directory path for video archives and for snapshot images. Note that the name of archival directory should be the same for all cameras; it is possible to specify different Hard Drives for each camera.
Advanced

Select Advanced from the Setting menu (figure 19) to set the following options:

Use DirectX if possible is an option to use DirectX functions that utilize graphics card hardware to display images instead of using the software. This reduces the load on the CPU. The drop-down list “DirectX size” provides options for the graphics area supported by DirectX – the selected size should correspond to the size of video images displayed. If using 5 Megabits camera please increment value as the default value would correspond to a 3 Megabits camera.

Auto – Startup is an option to automatically restart the AV Video System with the earlier settings after it was stopped.

Real-time if folded is an option to continue running the AV Video System application at the top priority level in the Windows Task Manager after the application was minimized and placed onto the system tray of the Windows task bar.

Show motion is an option to mark the areas of the image where motion was detected (requires enabling motion detection).

Use double packets is an option to use data packets with 2904 bytes instead of the regular 1450 bytes for image transmission. This allows increasing image transmission bandwidth, but may lead to a less stable performance on overloaded networks.

Warning on disconnect is an option to display a red screen warning in place of live video that has been disconnected or temporarily lost. An alternative (when disabled) is to display the last captured frame.

Static ARP is an option to enable a static link between the camera’s MAC address and its IP address. An alternative is a dynamic ARP that is not supported by some of the older models of the AV cameras.

Don’t update sensor window is an option that determines how the changes to the image size are applied: at a software level or in hardware (the image sensor). Enabling this option helps to avoid conflicts when multiple users are viewing the same camera (each will be able to set different image size). Alternatively, disabling this option allows to increase the camera frame rate due to a smaller image size.

Panoramic Mode is used for panoramic camera model AV8180 to automatically position and display the four images on screen.

Language let you select a Language.
Authentication

Authentication is used to set up password-protected access to AV Video System. For any users there are three levels of access available (Figure 20):

Figure 20. Authentication menu

- **“Administrator”** grants full access to all features of AV Video System.
- **“Viewer”** grants access to live video and browsing the archives, but not to the settings.
- **“Live only”** grants access to live video only.

Adding, changing, and removing the users is done via three buttons **Add, Change, and Remove** on the bottom of the menu.

If one or more user accounts were created, the AV Video System will display a log-in dialog prompting for the user name and password (Figure 21):
Remote Viewing

AV100 software has built-in web server allowing AV cameras and archives to be viewed remotely (Figure 22).

To enable the built-in HTTP server, select **Remote viewing** from the **Setting** menu and do the following:

1. Select **Allow Remote Viewing**.
2. On the bottom of the menu click **Apply** then **Ok**.
3. Start Internet Explorer and type in the address of the web server. For example, if AV Video System is installed on a PC with IP address 200.168.1.102, type in the following address:

4. Then click **Enter** to have Internet Explorer open that page.

 Upon successful connection a web page will open. Internet Explorer will prompt to install an ActiveX component. Click on the webpage as prompted to install ActiveX.

 The main AV menu located on the left hand side of the IE window will provide full access to each AV camera. Selecting the AV camera of choice will display the option to disconnect as well as make changes to settings such as the Resolution Speed, Archive, Zoom and viewing images in separate windows.

Right-clicking anywhere on the Explorer web page will provide access to the options menu:

Click **Save** to take a snapshot image.

- Click **Manage Servers** to provide server information and allows changes to the servers.
- Click **Auto Hide Menu** to automatically hide the main menu.
- Click **Settings** to adjust camera and video settings.
Day/Night

Day/Night (Figure 23) settings apply only to dual-sensor and single-sensor DN camera models equipped with a switching IR filter.

![Day/Night setting menu](image)

Automatic enables the camera to automatically switch from daylight conditions to nighttime conditions and back based on the **Threshold** settings.

Day enables the daylight mode and disables the nighttime mode.

Night enables the nighttime mode and disables the daylight mode.

Threshold adjusts the automatic switching of the camera (Note: for dual-sensor camera models the values are displayed in F-Stops, while for single-sensor DN models the values are in terms of camera gain):

- **Switch At** adjusts the level of darkness to switch from daylight to nighttime mode.
- **Toggle Guard** adjusts the level of brightness to switch from nighttime to daylight mode. Toggle Guard set to 0% corresponds to “Switch At” set to 100%. Toggle Guard should be adjusted to prevent mode toggling during the transitional lighting.
Auto-Iris

The Auto-Iris menu allows you to monitor the state of the automatic DC iris. If the scene is too dark, the camera will open the iris fully. This allows more light onto the sensor and will substantially improve the low-light performance. If the scene is too dark when the camera is started, the camera will not close the iris until there is enough illumination. Camera DC auto-iris can be configured using “Auto-Iris” menu (Figure 24):

The state of the auto-iris is displayed on a color panel which has six different states:

- **Disabled**: The auto-iris is either disabled by un-checking the **Enabled** check box, or is not present.
- **Evaluating**: The camera is preparing to close the iris.
- **Too Dark**: The camera cannot close the iris because the scene illumination is too low.
- **Closing**: The iris is closing down by the number of F-stops appropriate for the lens model.
- **Closed**: The iris is closed.
- **Opening**: The iris is opening.

Auto-iris will open the lens fully once the on-camera analog gains exceed a certain level. **Gain** scroll bar adjusts the point where the auto-iris will open fully: the higher the gain, the later the auto-iris will open as the illumination diminishes.

The iris can be disabled by un-checking **Enabled**. The camera will open the iris fully and have electronic auto-exposure working. This configuration is identical to using a manual lens.
Right-Click Menu

Right-clicking anywhere within the AV Video System screen brings up an additional menu (Figure 25):

![Additional menu within AV Video System screen](image)

Settings enables access to changing the main groups of settings as described in **Settings** (see pg.22):

Camera enables access to a combined menu that includes:

- **Exposure** (see pg. 26)
- **Image Quality** (see pg.29)
- **Rate Control** (see pg.30)
- **Archive** (see pg.31)
- **Day/Night** (see pg. 38)
- **Auto-Iris** (see pg. 39)
- It also includes some of the options in **Advanced** settings (see pg.35).

Miscellaneous enables access to the following:

- **Save To** (see pg.34)
- **Advanced** (see pg.35)
- **Authentication** (see pg.36)
- **Remote Viewing** (see pg.37)

Motion enables access to **Motion Settings** (see pg.32).

- **Printer** opens up the **Print Setup** menu.
• **Dump** logs camera settings to a file named LocalMachine.ini located in the installation directory. When contacting Arecont Vision’s technical support, this file should be included.

• **Video** displays live video in full-screen mode.

• **Import License** allows locating the folder with the license to enable the archiving in AV100 software.

• **Save to Flash** saves camera settings to camera flash memory.

• **Factory Default** resets the camera setting without changing camera IP Address to factory settings.

Photo enables saving and printing individual snapshots, as well as browsing:

- **Save** takes a snapshot of live video and saves it in the snapshot folder. The snapshot is taken from the camera which is highlighted in the drop-down list of the installed cameras (see **Toolbar** on pg.20). To highlight another camera, left-click on the camera number. To take the snapshot from all cameras, highlight “cameras” at the root (top) of the drop-down camera list.

- **Save/Print** takes a snapshot and prints it instantly.

- **Browse** opens the snapshot folder for browsing.

Browse presents three options:

- **Archive** enables access to browsing archives (See **Browsing Archives**).

- **Photos** enables access to snapshots taken with the AV cameras. The default snapshots location is C:\Documents and Settings\(User Profile)\My Documents\My Pictures\Arecont Vision Photos, a different directory path to the snapshot folder can be specified in the Settings menu (see **Settings** on pg.22).

- **HTTP** opens the default web browser to view the video stream from the selected camera via the web browser.

Hide minimizes the AV Video System application and hides it in the system tray of the Windows task bar.

Log off logs off the current user.

Exit exits the AV Video System application.

About shows the version of the AV Video System software and additional information for each of the installed camera(s): version of firmware and hardware, MAC address, and IP address.
Language Selection

AV Live Video System supports user interfaces in Arabic, Chinese Simplified, Chinese Traditional, English, Finnish, German, Japanese, Spanish, Russian and other languages. To select language press the F2 button to bring up the language menu (Figure 26).

Browsing Archives

Archive browsing is enabled by pressing the button in the Toolbar, or via the right-click menu (see Right-Click Menu on pg.40).
Archive browsing controls are located on the bottom of the playback screen (Figure 27). Archives are best viewed when the video is displayed in full-screen mode. The date-and-time stamp is located on the top left-hand side of the image. The user can select playback speed and frame skipping, as well as the image quality. If the archive was recorded using motion detection (see Motion Detection), browsing can be based on detected motion by selecting “Motion” from the drop-down list under “Filter”.

- **Rewind** - Starts browsing from the start of recording
- **Fast Reverse**
- **Play in Reverse** – Plays the recorded archive continuously in reverse (not available in H.264 archives)
- **Play by Frame in Reverse** – Starts the playback one frame at a time reverse
- **Pause** – Pauses the playback.
- **Play by Frame Forward** – Starts playback one frame at a time forward.
- **Play** – Plays the recorded archive continuously forward.
- **Fast forward**
- **Forward** - Starts browsing from the end of recording.
The slider on the bottom of the screen displays/positions the current frame position in the archive. It has a date-and-time display located to the right side of the slider to reference a particular event.

To take a snapshot from the archive use button from the Toolbar. Alternatively, snapshots can be taken by right-clicking on the video image, and then selecting “photo”, “save”.

AVI Maker - Making video clips from the archive

The AVI Maker (Figure 28) is started by clicking the corresponding Run button in the AV Application Manager.

Figure 28. AVI Maker

NOTE: Make sure that the archive is not empty when making avi clips.

To make video clips from your archives click Run on AVI Maker from AV Application Manager.
On “Click here to start”

1. Specify to the AviMaker which drive contains the video archive. If your AV100 has the default settings then C: would be the default archive drive. Otherwise type in the correct drive letter in the edit box, for example, D:

2. Click **Load Archive on Drive**. This will initiate a search on the specified drive for all available archives. The archives will be listed in the combo-box, numbered according to the camera numbers they were recorded with, starting with the smallest number.

3. Use the pull-down menu to select the desired camera/archive number.

4. Click **Select Archive Camera**. An image will appear on the screen corresponding to the earliest record of your video archive. If no archive is found, the screen will remain blank.

5. To explicitly specify which folders to search click **Browse Drives to Find Archive** button and select folders that contain your video archive.

6. To play archive press the play button ▶, use the Speed scrollbar to increase or decrease the speed of playback.

7. Select a specific time interval by pressing **Start** , then scroll the timeline scrollbar to the desired point in time, then press **End** under To select your clip, click. Alternatively, **Select All** to select video by the hour, minute or second.

8. To narrow down your time scale use **Zoom In** button: by clicking the **Zoom In** button repeatedly the time scale will change from Hours to Minutes to Seconds. To change the time scale in the reverse direction use the **Zoom Out** button.

9. **Video Settings** group offers three options:
 - **Size of Frame** adjusts the AVI frame size relative to the archived frame size. This option only affects XviD and MSVC video codecs and does NOT affect MJPEG/H.264 format
 - **Frame Period** adjusts the AVI frame rate (in milliseconds). **AviMaker** will automatically calculate the average frame period for selected archive. If the calculated number is longer than 1000 milliseconds, 1000 millisecond will be used. If the actual archive frame rate varies with time, the resulting video will be played accordingly faster or slower, depending on how much the actual frame rate deviate from the average.
 - **Timestamp** adds date/time information to the resulting video clip. Notice that it works differently in case “MJPEG/H.264” codec is selected: when the selected archive is JPEG format, **AviMaker** will decompress and recompress the top 64 lines of each frame to incorporate the timestamp, but the rest of the image will remain intact. When the selected archive is in H.264 format, the timestamp option is ignored.
10. **Video Compression** offers three options for making the AVI file:

- MJPEG/H.264 (best quality) offers a video format as recorded in the archive without decompression and recompression procedures. For this reason, this format offers best video quality. In case that timestamp is selected, please refer to “timestamp” section for clarifications.

- “XviD – http://www.xvid.org/” is a codec recommended by Arecont Vision (it is distributed together with AV Software, and is typically installed during the AV software installation). This codec has been found to produce reasonably good quality and compression ratio.

- “MSVC - standard” is a standard Microsoft video codec.

- “Choose from codecs list” allows selection of any of the alternative codecs that are installed on the computer. The drop-down list opens after “Make AVI” is clicked (Figure 29).

![Figure 29. Video Compression](image)

11. Click ![Button](image) (If no records are available for the selected range of dates or times a warning will be displayed).

12. In the **Save As** window type in a file name for your new AVI file, then click Save. If “Codec List” was selected under “Video Compression” the drop-down list of available codecs will appear. Select a codec from the list to proceed.

13. The AVI Maker will begin to create the AVI and show the progress in the progress bar. Optionally, click Stop to terminate the process.
Viewing Your Recorded Video

To view recorded video, download the latest Apple Quick Time v 7.4.5 or higher for Windows XP or Vista from http://www.apple.com/quicktime/download/

1. Select the drive where you stored your video recording by pressing and locate the recording.
2. Double Click on the video recording to start the player.
3. Click on the play button.
Firmware Loader – Upgrading Camera Firmware / Hardware in the Field

All models of AV cameras are field-upgradeable. AV Firmware Loader is the utility for upgrading the camera’s firmware and/or hardware. All AV cameras starting with firmware revision 51821 support firmware upgrades. Please contact your distributor to obtain the latest firmware upgrade file and utility.

NOTE: It is recommended that the user runs AV camera installer immediately prior to running the firmware loader.
To upgrade a camera:

1. The AV Firmware Loader is started by clicking the corresponding Run button in the AV Application Manager.

2. Click “Find Cameras”. It may take up to a minute to find the camera(s). Once the camera(s) have been found select the camera(s) to upgrade.

3. To upgrade the firmware:
 - Click “Upgrade Firmware” and choose the firmware upgrade file. The file name starts with "fwupdate", and the file extension is .txt. MAKE SURE THAT THE CAMERA MODEL YOU ARE UPGRADING IS INCLUDED IN THE FWUPDATE FILE NAME.
 - The firmware upgrade will start automatically. Do not disconnect the AV camera. When the upgrade is complete “Success!” message will be displayed next to the new version of firmware.

4. To upgrade the hardware:
 - Click “Upgrade Hardware” and choose the hardware upgrade file. The file name starts with “hwupdate”, and the file extension is .bin. MAKE SURE THAT THE CAMERA MODEL YOU ARE UPGRADING IS INCLUDED IN THE HWUPDATE FILE NAME.
 - The hardware upgrade will start automatically. Do not disconnect the AV camera. When the upgrade is complete “Success!” message will be displayed next to the new revision of hardware.

IMPORTANT: DISCONNECTING THE POWER TO THE CAMERA DURING THE UPGRADE WILL RESULT IN PERMANENT DAMAGE TO THE CAMERA.
Chapter III - HTTP Access

Single and Dual-Sensor Camera Models

This section describes the HTTP access to single-sensor and dual-sensor Arecont Vision cameras. HTTP access to panoramic cameras AV8180 and AV8360 is described at the end of this chapter.

Arecont Vision cameras support three protocols, TFTP, HTTP, and RTSP. TFTP protocol is recommended for application scenarios where high quality video at full frame rate is required. The drawback (if any) is that the implementation of TFTP protocols requires custom software application development based on Arecont Vision’s SDK. RTSP protocol is supported only in camera models that are equipped with H.264 encoder, as described at the end of this chapter.

Camera performance in terms of frame rate is somewhat slower via HTTP than via TFTP, and is comparable to other multi-megapixel products available on the market.

On-Camera Web Page

AV cameras can be accessed from a web browser via the on-camera web page. The web page allows changing camera settings and to view live video by means of Java script stored in camera’s non-volatile memory. The web page is accessed by typing in web-browser:

HTTP://ip_address or http://ip_address/index.html

In addition to the web page AV cameras also implement html video container that can be used for incorporation of the camera URL into user’s own html page. Video container is accessed from:

http://ip_address/livevideo

To incorporate the video container in the user’s html page, the user should add the following line in the body of the page:

<iframe src="http://200.168.1.10/"width="800"height="600"marginheight="0"marginwidth="0"scrolling="no"></iframe>

where parameters width and height specify the image size requested from the camera
HTTP Request Format for Receiving Individual JPEG Frames

NOTE: Complete set of http requests described in this document is supported for firmware versions 61430 and above. If you have AV camera with lower firmware version contact your distributor or email support@arecontvision.com for a firmware upgrade.

The individual image can be requested from AV cameras by using the following HTTP request format:

```
HTTP://ip_address/image?res=resolution_value&x0=X0&y0=Y0&x1=X1&y1=Y1&quality=quality_value&doublescan=doublescan_value&id=value
```

where

- **Res** can have value of either full or half and specifies whether camera should decimate the image by a factor of 2 in each direction.
- **X0, Y0, X1, Y1** are the left, top, right and bottom coordinates of the requested image window, respectively. These values cannot exceed the size of the image sensor array for the specific camera and should be divisible by 16 if “Res=full” and 32 if “Res=half”.
- **Quality** is the compression quality of the jpeg image with the range from 1 to 20.
- **Doublescan** is the parameter that allows the user to specify whether the camera should delay the image output until the new image is available (doublescan = 0) or the image request should be serviced by outputting the content of the image buffer that was already once output (useful for picture-in-picture display).
- **ID** is the optional field that is ignored by the camera but may be set by the user to a random value to force some browsers to display the new image.

The following example illustrates the request to camera with IP address 192.168.0.36 for the new full resolution 1600x1200 image with compression quality 12:

```
HTTP://192.168.0.36/image?res=full&x0=0&y0=0&x1=1600&y1=1200&quality=12&doublescan=0
```

The user also has the option of specifying default image parameters via parameter “set” requests and then obtaining the image by using a simple request without additional parameters: HTTP://ip_address/img.jpg

HTTP Request Format for Continuous MJPEG Video Streaming

Continuous sequence of JPEG images (MJPEG) separated by the boundary separator can be requested from AV cameras by using the following GET method request format:
GET/mjpeg?res=resolution_value&x0=X0&y0=Y0&x1=X1&y1=Y1&quality=quality_value&doublescan=doublescan_value&fps=value&id=value
HTTP/1.1
Host: ip_address

where

- Res can have value of either full or half and specifies whether camera should decimate the image by a factor of 2 in each direction;
- X0, Y0, X1, Y1 are the left, top, right and bottom coordinates of the requested image window, respectively. These values cannot exceed the size of the image sensor array for the specific camera;
- Quality is the compression quality of the jpeg image with the range from 1 to 20;
- Doublescan is the parameter that allows the user to specify whether the camera should delay the image output until the new image is available (doublescan = 0) or the image request should be serviced by outputting the content of the image buffer that was already once output (useful for picture-in-picture display).
- FPS specifies the requested frame rate; values 1 to 15 result in the specified frame rate, while omitting fps parameter as well as fps values of 0 and all values above 16 result in maximum frame rate that is model dependent.

The following example illustrates the request to camera with IP address 192.168.0.36 for the new full resolution 1600x1200 video stream with compression quality 12 at a maximum frame rate:

GET /mjpeg?res=half&x0=0&y0=0&x1=1600&y1=1200&quality=12&doublescan=0 HTTP/1.1
Host: 192.168.1.11

In response to the above request the camera sends continuous stream of images separated by the boundary separator “fbdr” in accordance with MIME multipart/x-mixed-replace format. Please note that MIME multipart/x-mixed-replace format is not directly supported by Internet Explorer and requires user application to correctly process the image stream. For video viewing based on IE only the users should use on-camera script that can be accessed via HTTP://ip_address/index.html request.

HTTP/1.0 200 Ok
Content-Type: multipart/x-mixed-replace;boundary=fbdr
HTTP Request Format for Receiving Individual H.264 Frames

NOTE: H.264 http requests described below are supported only by camera models AVxxx5.

Notational conventions:

- **camera_ip**: IP address of the camera;
- **|** : means one or another, but not both;
- **()** : allowable values;
- **..** : a range of values incrementable by 1;
- **[]** : non-mandatory value which could be dropped.

To maintain a continuous H.264 stream, the requests for individual video frames should be sent one after another. If the delay between the requests exceeds 5 sec, the camera will initiate a new stream by sending an Intra coded frame first in response to the next frame request. Individual H.264 video frames are requested from AV cameras by using the following HTTP request format:

```
http://camera_ip/h264f?res=(half|full)&x0=(0..2596)&y0=(0..1944)&x1=(32..2596)&y1=(32..1944)&qp=(4..36)&doublescan=(0|1)&ssn=(1..65535)&iframe=(0|1)&bitrate=(1..51200)&intra_period=(0..255)
```
where

- **Res** can take the value of either “full” or “half” to specify whether the camera should decimate the image by a factor of 2 in each dimension;
- **X0, Y0, X1, Y1** are the left, top, right and bottom coordinates of the requested image window, respectively. These values cannot exceed the size of the image sensor array for the specific camera model and should be divisible by 32 if **Res = full** and 64 if **Res = half**.
- **QP** is the quantization parameter for H.264 frame. To achieve a higher quality video, a lower **QP** is needed; recommended values are in the range (16..37);
- **Doublescan** is the parameter that allows the user to specify whether the camera should delay the frame output until the new frame is available from the sensor (**doublescan = 0**) or the request should be serviced by outputting the content of the memory buffer that has been already once output (useful for picture-in-picture display).
- **SNN** specifies stream identifier. MPEG codecs including H.264 codecs are context dependent (decoding of the current frame depends on the previous frame(s)). The stream is a sequence of frames of the same resolution which can be decoded sequentially by one instance of an MPEG decoder. Accordingly, **SSN** is a means to distinguish different streams from each other. Use unique **SSN** for each stream with a unique image size, quality, and/or frame rate. Each camera supports up to eight simultaneous non-identical streams. Each individual client must have a unique (ip:ssn)
- **Iframe** set to 1 will force the camera to return an Intra frame with a corresponding SPS and PPS as an IDR slice – so that the stream is decodable from this point. When opening a new stream (for example when changing the image size and/or frame rate) the Intra frame will be sent automatically regardless of the input value of **iframe**. To reduce the stream size, reduce the frequency of **iframe = 1** in the requests. The default number of P-frames for any of the streams sent by the camera is set using HTTP command :

```
http://camera/setreg?page=3&reg=21&val=(number of P-frames)
```

The camera will return an Intra frame even if **iframe** in the request is set to 0 when the on-camera counter of P-frames fills up. To find out whether an Intra frame was received, check the HTTP Content Type.

- **Bitrate** is used to set up a constant **bitrate** of the H.264 stream in kilobits per second. If this parameter is present in the request string and is larger than zero then **QP** parameter is ignored, and the camera adjusts quantization parameters automatically to maintain the specified **bitrate**.
- **Intra_period** is valid only in bitrate control: when a non-zero bitrate is present in the request string and iframe=1 is periodically requested by the user. In this case, the user must specify the intra-frame period at which the user is sending requests with iframe=1. If the user does not specify `intra_period` in this case, then bitrate control will not function correctly unless the actual period of iframe=1 requests is the same as the default number of P-frames specified in register 3:21 of the camera via

 `http://camera/setreg?page=3®=21&val=(number of P-frames)`

If there are no iframe=1 requests, then `intra_period` parameter is not required: the bitrate control will rely on the default number of P-frames set in register 3:21.

The following example illustrates a request to a camera with IP address 192.168.0.36 for a full resolution 1600x1200 image as a part of the stream with a constant bitrate set to 2 Mbits/sec:

 `http://192.168.0.36/h264f?res=full&x0=0&y0=0&x1=1600&y1=1200&quality=12&doublescan=0&bitrate=2048&ssn=1`

Each frame sent by the camera may contain multiple zero bytes at the end – there is no Unit Delimiter (UD). Although this does not contradict ITU-T H.264 standard (ISO/IEC 14496-10), some decoders may delay decoded frames by one due to the absence of the UD. To avoid this, replace all zero bytes at the end with the UD, a sequence of the following five bytes: 0x00 0x00 0x01 0x09 0x10. In addition, the number of zero bytes at the end of a frame may be significant, up to a few hundred bytes. Replacing them with the UD will also reduce the stream size.

RTSP Request Format for Continuous H.264 Video Streaming

Reference documents for the RTSP/RTCP+SDP+RTP protocol implementation are:

- RFC 3550 for RTCP
- RFC 1889 for RTP
- RFC 2327 for SDP
- RFC 2326 for RTSP
- RFC 3984 for the data format of H.264 streaming over RTP
Unicast camera access:
The AV***5 series cameras support RTSP protocol via TCP connections. Any request sent to camera via UDP will be ignored. The maximum number of simultaneously serviced unicast requests or video streams is eight.

Accessing video stream via RTSP commands:
Notational conventions:
• *camera_ip* : IP address of the camera;
• | : means one or another, but not both;
• () : allowable values;
• .. : a range of values incrementable by 1;
• +/- : positive values do not need the “+” sign, while the negative values do need the “-“ sign in front of the value;
• [] : non-mandatory value which can be dropped / skipped.

An H.264 video stream is requested via RTSP using the following URL:
```
rtsp://camera_ip/h264.sdp?res=(half | full)&x0=(0..max_sensor_width)&y0=(0..max_sensor_height)&x1=(32..max_sensor_width)&y1=(32..max_sensor_height)&qp=(4..51)&ssn=(1..65535)&[doublescan=(0|1)]&[bitrate=(0..65536)]
```

where:
- **res** – image resolution (full, half);
- **x0,y0,x1,y1** – image cropping coordinates;
- **qp** – H.264 quantization parameter, an inverse of image quality (this parameter is ignored if bitrate value is also specified);
- **doublescan** – the mode of frame access (0 – wait for the fresh frame from the sensor; 1 – read the earlier buffered frame from memory which may have been already sent before);
- **ssn** – a unique RTSP session number, cancels out any earlier RTSP request with the same number;
- **bitrate** – sets the desired constant data rate in 1Kbps increments: the camera automatically adjusts image quality to maintain constant data rate regardless of the “qp” parameter.

The camera recognizes the following RTSP methods:
- **OPTIONS** – requesting supported RTSP methods;
- **DESCRIBE** – requesting available resources and their format;
SETUP – resolving the camera’s and the client’s ports;
PLAY – starting RTP video stream;

The camera also recognizes PAUSE and TEARDOWN but terminates the RTSP session when it receives these commands. To resume the stream it is necessary to repeat stream initialization.

Following is a sequence of resolving camera’s parameters and starting an RTP stream:
1. Open TCP connection on port 554 (RTSP) of the camera.
2. Request the camera’s data format via DESCRIBE. The camera will respond with SDP parameter set of the H.264 stream (SPS/PPS), and the method of forming RTP data packets and synchronization (90 KHz timer).
3. Specify via SETUP the client ports for receiving the video stream.
4. Request PLAY to start the RTP video stream.
5. Receive and decode H.264 video frames packed into fragmented RTP packets that are transmitted via UDP by the camera.
6. At least every 5 seconds of the RTP streaming send RTCP feedback packets. If the camera does not receive any RTCP packets over a 10 second period, the session will be terminated.

The camera sends IDR frames followed by multiple P-frames. All frames are transmitted in the form of FU-A fragmented RTP packets as described in RFC 3984. The default number of P-frames is 50, and can be modified using the following HTTP command:

http://camera_IP/setreg?page=3®=21&val=(number of P-frames)

Current P-frame setting can be checked using the following HTTP command:

http://camera_IP/getreg?page=3®=21

Basic Camera Control Parameters

The camera parameters can be accessed via the HTTP requests of the following format:
HTTP://ip_address/set?parameter=value
HTTP://ip_address/get?parameter
Examples:

HTTP://192.168.0.36/set?brightness=15
HTTP://192.168.0.36/get?brightness

The following parameter requests are supported via HTTP protocol by AV cameras:

- **brightness** – image brightness (valid values are from -50 to 50)
- **sharpness** – image sharpening (valid values are from 0 to 4)
- **saturation** – color saturation (valid values from 0 to 6)
- **color balance adjustment** (tint)
 - **blue** (valid values from -10 to +10)
 - **red** (valid values from -10 to +10)
- **illum** – illumination setting for auto white balance (valid values are auto, indoor, outdoor, mix)
- **freq** – frequency of AC powered light sources (valid values are 50 and 60)
- **lowlight** – low light mode of the camera, allows tradeoff between frame rate and image quality (valid values are balance, speed, quality, highspeed, moonlight). If highspeed is used, an additional parameter **shortexposures** can be set with valid values 1 through 10.
- **rotate** – image rotation (valid values are 0 and 180)
- **autoexp** – allows to turn on and off auto exposure (valid values are on and off)
- **expwndleft** - left coordinate of user-defined auto-exposure measurement window (valid values should fall within sensor window)
- **expwndtop** - top coordinate of user-defined auto-exposure measurement window (valid values should fall within sensor window)
- **expwndwidth** - width of user-defined auto-exposure measurement window (valid values should fall within sensor window)
- **expwndheight** – height of user-defined auto-exposure measurement window (valid values should fall within sensor window)
- **sensorleft** - left coordinate of sensor window (valid values defined by sensor size)
- **sensortop** - top coordinate of sensor window (valid values defined by sensor size)
- **sensorwidth** - width of sensor window (valid values defined by sensor size; this value affects sensor frame rate)
- **sensorheight** - height of sensor window (valid values defined by sensor size; this value affects sensor frame rate)
- **imgleft** - left coordinate of default image returned in response to the simple request
 - http://ip_address/img.jpg (valid values should fall within sensor window)
• **imgtop** - top coordinate of default image returned in response to the simple request http://ip_address/img.jpg (valid values should fall within sensor window)

• **imgwidth** – width of default image returned in response to the simple request http://ip_address/img.jpg (valid values should fall within sensor window)

• **imgheight** - height of default image returned in response to the simple request http://ip_address/img.jpg (valid values should fall within sensor window)

• **imgquality** – quality setting of image returned in response to the simple request http://ip_address/img.jpg (valid values 1 to 21)

• **imgres** – resolution of default image returned in response to the simple request http://ip_address/img.jpg (valid values are full and half, where half is used to request images decimated by a factor of 2 in both directions)

• **auto-iris** – allows to enable and disable auto-iris (valid values are on and off)

• **irisgain** – allows to specify threshold for closing the auto-iris (valid values are from 8 to 255)

• **save** – saves current camera configuration (all parameter values) in the non-volatile memory http://ip_address/set?params=save

• **mac** – retrieves the MAC address of the camera (read-only)

• **make** – retrieves the manufacturer abbreviation (requires firmware version 64116)

• **model** – retrieves last 4 numbers of the camera model (read-only, e.g. AV2100 camera will return 2100)

• **fwversion** – retrieves firmware version of the camera

• **procversion** – retrieves version of the image processor

• **netversion** – retrieves version of the network processor

• **revision** – retrieves the revision code of the PCB

• **factory** – restores camera parameters to factory defaults http://ip_address/set?params=factory

access to camera registers:

setreg?page=page_number®=register_number&val=register_value

Parameters Specific to AV3130 DAY/NIGHT Cameras

AV3130 camera utilizes two distinct sensors for its day and night modes. Specifically, 3-Megapixel color sensor with IR-cut filter is used in the day mode, while 1.3-Megapixel monochrome sensor without IR-cut filter is used in the night mode.

As AV3130 camera has two sensors with different resolutions it is most convenient to specify the required image size in terms of percentages of the full image size as shown in the following example:
HTTP://200.168.1.10/image?res=full&x0=0%&y0=0%&x1=100%&y1=100%&quality=12&doublescan=0

By default, the camera automatically switches between day and night channels as illumination changes. However, it is also possible to force the camera to operate in either day or night channel by using daynight request. The switch point between day and night modes is determined based on overall AE/AGC gain and can be adjusted via parameter nightgain. To avoid oscillations between day and night modes, the night-to-day transition is specified via parameter daygain in terms of “hysteresis” relative to day-to-night transition threshold.

- **daynight** – if set to “auto” the camera will select between color and monochrome channels automatically based on daygain and nightgain thresholds (valid values are “auto”, “day” and “night”)
- **nightgain** – allows to specify the automatic switching point for day-to-night transition in proportion to overall exposure*gain value; The user may need to adjust this value if the lenses on day and night channels have different f-stops; Higher values will cause the transition to night mode at lower illumination level (valid values are from 0 to 18)
- **daygain** – allows to specify the automatic switching point for night-to-day transition as “hysteresis” relative to night-to-day transition; Higher values will cause the transition to day mode at higher illumination level (valid values are from 0 to 6, 0 is not recommended)

Motion Detection Control Parameters

The unique design of AV cameras allows supporting highly accurate 64-zone motion detection (also see Motion Detection). Motion detection is achieved by analyzing inter-frame brightness changes on a pixel-by-pixel basis. To provide accurate motion detection in low contrast and low light environments, EACH pixel of EACH frame is analyzed. The user can set the size of motion detection zones (via mdzonesize), select the sensitivity to motion (via mdlevelthreshold), select the zones where the motion detection has to be blocked (via mdprivasymask) and specify the size of the moving objects of interest (via mddetail). Motion detection information can be obtained from the camera in terms of “amount” of motion in each zone (via mdresult) In addition to retrieving motion detection information, the camera can also be configured to output images only if motion is detected (via mdmode).

On-camera motion detection unit utilizes up to 64 distinct zones. All zones are square, have equal size and are arranged in 8 rows with 8 zones per row. The zones are numbered from 0 to 63, upper leftmost zone having number 0 and lower rightmost zone having number 63. The zones are broken into sub-zones of size 32x32 pixels. The size of zones is specified in terms of the square root of the number of sub-zones via parameter mdzonesize. The zones can be defined to be as small as 7x7 sub-zones to as large as 15x15 sub-
zones. By setting the limit on how many sub-zones should contain the motion for the entire zone to be considered to contain motion the user can effectively decide on the size of the moving objects that should be detected. This is done via parameter \texttt{mddetail}.

- \texttt{motiondetect} – enables on-camera motion detection (valid values are “on” and “off”)
- \texttt{mdmode} – motion detection mode for mjpeg streams (valid values are “on” and “off”); if set to “on” the camera will only output an image in the presence of motion; If the motion is not detected, the field following the frame boundary separator --fbdr will be followed by Content-Type: text/plain (instead of usual -Type: image/jpeg) and the image data will be substituted with the text message “no motion”
- \texttt{mdtotalzones} - number of independent motion detection zones; Currently must be 64. There are 8 rows of zones, 8 zones per row. Note that depending on zone size and the camera model (image resolution in terms of the number of pixels)some zones may not correspond to the active image area (valid value 64)
- \texttt{mdzonesize} – size of motion detection zones measured in number of 32x32 pixel blocks in each zone; All zones are squares of the same size from 7x7 to 15x15 (valid values are 7 to 15 for AV1300 and AV2100 and 8 to 15 for AV3100 and AV3130)
- \texttt{mdlevelthreshold} – motion detection threshold that determines the sensitivity to local inter-frame brightness changes (valid values are 2…31). Lower settings may cause false motion detection due to noise. This parameter corresponds to “Level” under “Motion Settings” in AV Video System GUI.
- \texttt{mdsensitivity} – sensitivity of the motion detection to sudden overall lighting changes. This allows preventing false triggering due to sudden overall brightness change that triggers motion detection in a large number of zones simultaneously. If more than this number of zones have motion it is assumed that the change is due to lighting change and detected motion is ignored; (recommended values are 40 for AV3100/AV3130, 30 for AV2100 and 20 for AV1300). This parameter corresponds to “Limit” under “Motion Settings” in AV Video System GUI.
- \texttt{mddetail} – allows controlling the size of detectable moving objects. The value is the number of 32x32 sub-zones within each zone that should contain motion for the entire zone to be considered to contain motion. (valid values are 1 through square of \texttt{mdzonesize}). This parameter corresponds to “Detail” under “Motion Settings” in AV Video System GUI.
- \texttt{mdprivasymask} – Privacy matrix. An 8-byte array, where each byte corresponds to one row of motion detection zones. Each bit in a byte enables motion detection in a corresponding zone, if set to ‘1’. Leftmost zone is controlled by MSB, rightmost zone by LSB.

Example: set?mdprivasymask=2a8f3d135b71ee04 results in the following enabled zones relative to camera image:

```
01010100
11100001
10111100
```
• **mdresult** – Motion detection information returned by the camera; The return value is “no motion” if motion has not been detected, otherwise the motion detection information is returned in the following format:

```
mdresult=<SP><hexadecimal byte0><SP><hexadecimal byte1>...<SP><hexadecimal byte63>
```

where <SP> is the SPACE symbol, and the byte value, byteN, indicates the number of sub-zones (blocks of 32x32 pixels) with motion within zone N. Note: the sub-zone size is fixed to 32x32 and cannot be changed. Important: the user should keep in mind that the total number of zones is always 64 (8 vertically and 8 horizontally). Therefore, if the zone size is large, some zones may not correspond to the active pixel array. In that case their motion detection value is not meaningful and should be ignored. For example, for AV1300 camera: if the image size is 1280x1024, then for zone size 8x8 there are 5 by 4 active zones (3 zones after every 5 zones must be ignored as well as all zones after zone 32).

Example:
```
mdresult= 00 1A 01... means that in zone 0 motion was not detected, in zone 1 there are 26 (32x32) sub-zones with motion, in zone 2 there is one sub-zone 1 with motion ....
```

Access Control

Arecont Vision cameras support dual-level password-protected access control. Camera authentication is compatible with RFC-2068 HTTP 1.1 and is supported by all standard browsers and video surveillance software.

There are two types of users with the following reserved names:

- **admin** – has full access to all camera settings and the video.
- **viewer** – has viewing access to all current camera settings and the video.

Setting and removing the passwords is the privilege of the admin user, while the viewer can only use the existing password, but not change it. Factory defaults erase all current passwords for both the admin and the viewer. A newly shipped camera has no password protection and allows full anonymous access from the
network. In case the **admin** password has not been set, the camera has full anonymous access from the network, even if the **viewer** password has been set.

Access control setup consists of three steps:
1. Set **admin** password (using http commands or using the camera’s web page, see below).
2. Log-in using the **admin** password and set the **viewer** password.
3. Communicate the **viewer** password to the users.

In order to delete **viewer** password, log-in as **admin** and change the **viewer** password to a reserved password **empty** – this would restore the full anonymous access to the camera. The **admin** user can change the **viewer** password at any time, even without knowing the current **viewer** password.

NOTE: If the **admin** password has been set and forgotten, it can only be erased through reprogramming the camera’s firmware, or by accessing the camera registers via developers’ register access from AV100 software.

HTTP commands for password setting:

1. For **admin** passwords:
   ```
   http://camera_IP/get?admin
   http://camera_IP/set?admin=(a string of 1..8 ASCII symbols or "empty")
   ```
The reserved password **empty** is used to erase the existing password.

2. For **viewer** passwords (Figure 30):
   ```
   http://camera_IP/get?viewer
   http://camera_IP/set?viewer=(a string of 1..8 ASCII symbols or "empty")
   ```
The reserved password **empty** is used to erase the existing password.
HTTP/1.1 vs. HTTP/1.0

Arecont Vision cameras support both HTTP/1.0 and HTTP/1.1 protocols as defined by RFC-1945 and RFC-2068, respectively. While HTTP/1.0 is simple, it limits the speed of image transmission for cases when the user requests individual images rather than mjpeg stream. This is due to the fact that connection is closed after the transmission of each image, forcing the client to incur round trip delay repeatedly. However, HTTP/1.0 is supported by all HTTP implementations and can be used reliably, albeit with limited speed. By default, Arecont Vision cameras are configured to respond using HTTP/1.0 protocol regardless of the HTTP version used by the client.

The users who desire faster full duplex communication and image delivery may request responses over HTTP/1.1 protocol. To do so, the user should append parameter ver=HTTP/1.1 to the request string as shown in the following example:

```
HTTP://192.168.0.36/image?res=full&x0=0&y0=0&x1=1600&y1=1200&quality=12&doublescan=0&ver=HTTP/1.1
```

It is important to note that AV cameras implement “chunked” transfer encoding as defined by paragraph 14.40 of RFC-2068. While RFC-2068 requires that all HTTP/1.1 implementations support “chunked” encoding, in
reality many older implementations (Indy 9, WinHTTP 5.0, etc) are not fully compliant with the requirements of the standard. As a result, if the HTTP/1.1 protocol is requested from a non-compliant implementation, the chunks separators will remain in the data stream and the jpeg image will be corrupted. If the user receives corrupted images over HTTP/1.1 the user should either remove HTTP/1.1 specification from the request or upgrade the HTTP implementation to fully compliant (e.g. WinHTTP 5.1)

HTTP Access of Panoramic Cameras

Notational conventions:

- **camera_ip**: IP address of the camera;
- **get**: get a parameter from camera via http;
- **set**: set a parameter on camera via http;
- `<channel>`: camera channel number from 1 to 4;
- `*`: a symbol string in ASCII;
- `|`: means one or another, but not both;
- `()`: allowable values;
- `..`: a range of values incrementable by 1;
- `+-`: positive values do not need the “+” sign, while the negative values do need the “-” sign in front of the value;
- `[]`: non-mandatory value which could be dropped.

In order to access the built-in camera’s web page type either of the two following http commands into the web browsers’ address field:

- `http://camera_ip/`

Requesting Images from Panoramic Cameras

The AV8360/AV8180 camera models support two types of image requests: individual JPEG image requests (image or img.jpg) and a continuous stream MJPEG stream requests (mjpeg). The maximum number of supported simultaneous requests of single images or mjpeg streams is eight.

NOTE: Even though the camera supports multi-user access, the maximum frame rate is achieved only when there is a single request arriving to each channel at any given time.
1. Requesting individual JPEG images

1.1 Requesting images using explicit parameter list within the HTTP string:

```
http://camera_ip/image[<channel>]?res=(full|half)&x0=(0..1600)&y0=(0..1200)&x1=(32..1600)&y1=(32..1200)&quality=(1..21)&doublescan=(0|1)&[id=(0..99999999999999)]&[ssn=(0..65535)]
```

where:
- res – image resolution (full or half);
- x0,y0,x1,y1 – image cropping coordinates;
- quality – image quality, the inverse of image compression level;
- doublescan – read mode (reserved for future use);
- id – an arbitrary number used to control the web browser’s cache;
- ssn – a unique HTTP session number which cancels out any earlier sent HTTP request with the same number which got “hung”;

NOTE: Image request without `<channel>` parameter specified will cause the camera to transmit the next available image from any of the currently enabled channels. The channel number of the transmitted image could then be identified from the HTTP header Etag (see RFC-2068 HTTP 1.1):

```
ETag: Channel<channel>
```

1.2 Requesting images using implicit parameter list (parameters are loaded on camera in advance using separate http commands (see section B 16 below):

```
http://camera_ip/img.jpg?[id=(0..99999999999999)]&[ssn=(0..65535)]
```

where:
- id – an arbitrary number used to control the web browser’s cache;
- ssn – a unique HTTP session number which cancels out any earlier sent HTTP request with the same number which got “hung”;

2. Requesting continuous Motion JPEG image stream
http://camera_ip/mjpeg[<channel>?res=(half|full)&x0=(0..1600)&y0=(0..1200)&x1=(32..1600)&y1=(32..1200)&quality=(1..21)&doublescan=(0|1)&[fps=(0..15)]&[id=(0..99999999999999)]&[ssn=(0..65535)]

where:
res – image resolution (full or half);
x0,y0,x1,y1 – image cropping coordinates;
quality – image quality, the inverse of image compression level;
doublescan – read mode (reserved for future use);
fps – desired frame rate (frames per second);
id – an arbitrary number used to control the web browser’s cache;
ssn – a unique HTTP session number which cancels out any earlier sent HTTP request with the same number which got “hung”;

NOTE: MJPEG request without `<channel>` parameter specified will cause the camera to transmit next available image from any of the currently enabled channels. The channel number of the transmitted image could then be identified from the HTTP header Etag (see RFC-2068 HTTP 1.1): *ETag: Channel<channel>*.

Getting and Setting Camera Parameters

NOTE: All commands listed below that allow parameter setting without explicitly specifying the channel number apply to all four channels.

NOTE: The parameter setting is allowed only for the users with the admin access level (see below under Camera Access Control).

1. Enabling camera channels:

 http://camera_ip/get?channeenable
 http://camera_ip/set?channeenable=(1..15 as a 4-bit mask where each bit corresponds to one camera channel, LSB is channel 1)

2. Image rotation:

 http://camera_ip/get<channel>?rotate
 http://camera_ip/set[<channel>]?rotate=(0|180)

3. Brightness:
4. Sharpness:

 \[\text{http://camera_ip/get<channel>?sharpness} \]

 \[\text{http://camera_ip/set<channel>?sharpness=(0..4)} \]

5. Saturation:

 \[\text{http://camera_ip/get<channel>?saturation} \]

 \[\text{http://camera_ip/set<channel>?saturation=(0..6)} \]

6. Blue balance:

 \[\text{http://camera_ip/get<channel>?blue} \]

 \[\text{http://camera_ip/set<channel>?blue=(-10..+10)} \]

7. Red balance:

 \[\text{http://camera_ip/get<channel>?red} \]

 \[\text{http://camera_ip/set<channel>?red=(-10..+10)} \]

8. Illumination:

 \[\text{http://camera_ip/get<channel>?illum} \]

 \[\text{http://camera_ip/set<channel>?illum=\text{"auto"|"indoor"|"outdoor"|"mix"}} \]

9. Mains frequency, Hz (for indoor lighting compensation):

 \[\text{http://camera_ip/get<channel>?freq} \]

 \[\text{http://camera_ip/set<channel>?freq=\{50\|60\}} \]

10. Exposure mode (low light mode):

 \[\text{http://camera_ip/get<channel>?lowlight} \]

 \[\text{http://camera_ip/set<channel>?lowlight=\text{"highspeed"|"speed"|"balance"|"quality"|"moonlight"}} \]

11. Shutter time in high-speed exposure mode (in milliseconds):

 \[\text{http://camera_ip/get<channel>?shortexposures} \]

 \[\text{http://camera_ip/set<channel>?shortexposures=\{1..10\}} \]

12. Auto exposure control:

 \[\text{http://camera_ip/get<channel>?autoexp} \]
http://camera_ip/set<channel>?autoexp="on"|"off"

13. Auto exposure mode:

http://camera_ip/get<channel>?exposure

http://camera_ip/set<channel>?exposure="auto"|"on"|"off"

14. Exposure window:

http://camera_ip/get?expwndleft

http://camera_ip/set?expwndleft=(0..max of the corresponding sensor size)

http://camera_ip/get?expwndtop

http://camera_ip/set?expwndtop=(0..max of the corresponding sensor size)

http://camera_ip/get?expwndwidth

http://camera_ip/set?expwndwidth=(0..max of the corresponding sensor size)

http://camera_ip/get?expwndheight

http://camera_ip/set?expwndheight=(0..max of the corresponding sensor size)

15. Sensor cropping:

http://camera_ip/get?sensorleft

http://camera_ip/set?sensorleft=(0..max of the corresponding sensor size)

http://camera_ip/get?sensortop

http://camera_ip/set?sensortop=(0..max of the corresponding sensor size)

http://camera_ip/get?sensorwidth

http://camera_ip/set?sensorwidth=(0..max of the corresponding sensor size)

http://camera_ip/get??sensorheight

http://camera_ip/set?sensorheight=(0..max of the corresponding sensor size)

16. Image settings used as the implicit parameter list in img.jpg image requests:

http://camera_ip/get?imgleft

http://camera_ip/set?imgleft=(0..max of the corresponding sensor size)
http://camera_ip/get?imgtop
http://camera_ip/set?imgtop=(0..max of the corresponding sensor size)

http://camera_ip/get?imgwidth
http://camera_ip/set?imgwidth=(0..max of the corresponding sensor size)

http://camera_ip/get?imgheight
http://camera_ip/set?imgheight=(0..max of the corresponding sensor size)

http://camera_ip/get?imgquality
http://camera_ip/set?imgquality=(0..21)

http://camera_ip/get?imgres
http://camera_ip/set?imgres="full"|"half"

17. Getting MAC number:
 http://camera_ip/get?mac

18. Getting camera model:
 http://camera_ip/get?model

19. Getting firmware version:
 http://camera_ip/get?fwversion

20. Getting image processor engine version:
 http://camera_ip/get?procversion

21. Getting network processor version:
 http://camera_ip/get?netversion

22. Getting PCB revision
 http://camera_ip/get?revision

23. Store current settings into the flash memory:
 http://camera_ip/set?params=save

24. Restore factory default settings:
http://camera_ip/set?params=factory

25. Custom mode settings:

http://camera_ip/get<channel>?kneepoint
http://camera_ip/set<channel>?kneepoint=(1..100)

http://camera_ip/get<channel>?analoggain
http://camera_ip/set<channel>?analoggain=(1..10)

http://camera_ip/get<channel>?maxkneegain
http://camera_ip/set<channel>?maxkneegain=(2..??)

http://camera_ip/get<channel>?maxexptime
http://camera_ip/set<channel>?maxexptime=(0..100)

http://camera_ip/get<channel>?maxdigitalgain
http://camera_ip/set<channel>?maxdigitalgain=(32..127)

26. Alternative receiving port of the camera’s web server:

http://camera_ip/get?webserverport
http://camera_ip/set?webserverport=(0..65535)

27. User password with admin level of access:

http://camera_ip/get?admin
http://camera_ip/set?admin=(text string of 1..8 ASCII symbols | "empty")

NOTE: to erase the password use the reserved word “empty”.

28. User password with viewer level of access:

http://camera_ip/get?viewer
http://camera_ip/set?viewer=(text string of 1..8 ASCII symbols | "empty")

NOTE: to erase the password use the reserved word “empty”.

29. Camera’s register access:

http://camera_ip/getreg?page=(0..6)®=(0..255)
http://camera_ip/setreg?page=(0..6)®=(0..255)&value=(0..65535)
Chapter IV - Troubleshooting and Useful Tips

Connecting Directly To Laptop or PC

In a typical scenario cameras are connected using network cables to a network switch. A camera can also be connected to a PC or laptop directly. Be sure to use a cross-over network cable between the camera and PC when connecting in this fashion.

When a camera is connected directly, in some cases you may need to change TCP/IP configuration on your PC. For example, configure the PC to work with a static IP address.

When a PoE injector is used and connected directly to a PC there are two networking cables, one cable connects the PC to the PoE injector; the other connects the injector to the camera. Only one of these cables must be cross-over. The other cable must be regular, not cross-over.

NOTE: AV8360 cameras require a higher PoE power class (Class 3: from 6.49 to 12.95 Watt) than other AV camera models.

Switches and Routers

Note that some Gigabit switches and network adapters incompletely emulate 100BaseT signaling levels and may not work correctly with high bandwidth 100BaseT equipment.

Low Sharpness

If the image sharpness appears to be low:

- Check if the lens is in focus.
- Check if the lens is appropriate for a megapixel camera.
- Under Image Quality menu decrease compression and increase sharpness.
- Check if the lens iris is fully open or closed down too much. For best resolution and depth of field the iris (depending on lens make and model) should be closed by 2-3 F-stop.
Frequently Asked Questions

1. What type of video compression is used in AV cameras?
 AV cameras use MJPEG - Motion JPEG and H.264.

2. How much storage space is required when using AV cameras?
 The storage space requirements will vary depending on how compressible your imagery will be. Shown below (Figure 31) is an example of a system running at 22 FPS. However, the user can specify the archival frequency to be lower than the full frame rate. Most AV cameras also provide highly sophisticated on-board motion detection. To further reduce the required storage the user has an option to archive only those images that contain the motion. Furthermore, AV cameras support real-time resolution changes and image windowing on a frame-by-frame basis. The user may wish to archive windows of interest or reduced resolution images at the high frame rate while archiving full resolution images at the lower frame rate.

 Figure 31. Example of a system running at 22 FPS

<table>
<thead>
<tr>
<th>FPS = 22</th>
<th>Storage Kbytes/frame</th>
<th>Kbytes/24 H</th>
<th>Quality = 2</th>
<th>Storage Kbytes/frame</th>
<th>Kbytes/24 H</th>
<th>Quality = 13</th>
<th>Storage Kbytes/frame</th>
<th>Kbytes/24 H</th>
<th>Quality = 21</th>
<th>Storage Kbytes/frame</th>
<th>Kbytes/24 H</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040x1530</td>
<td>202</td>
<td>15,998</td>
<td>383,962</td>
<td>278</td>
<td>22,018</td>
<td>529,422</td>
<td>463</td>
<td>36,670</td>
<td>880,070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1920x1200</td>
<td>164</td>
<td>12,197</td>
<td>292,725</td>
<td>216</td>
<td>17,167</td>
<td>410,673</td>
<td>352</td>
<td>27,870</td>
<td>699,082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600x1200</td>
<td>148</td>
<td>11,722</td>
<td>291,318</td>
<td>202</td>
<td>15,998</td>
<td>383,962</td>
<td>326</td>
<td>26,097</td>
<td>625,393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1280x1024</td>
<td>128</td>
<td>10,138</td>
<td>243,302</td>
<td>176</td>
<td>13,839</td>
<td>334,641</td>
<td>293</td>
<td>23,206</td>
<td>658,934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>960x640</td>
<td>96</td>
<td>7,920</td>
<td>190,080</td>
<td>139</td>
<td>11,009</td>
<td>264,211</td>
<td>227</td>
<td>17,978</td>
<td>431,482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>640x480</td>
<td>64</td>
<td>5,297</td>
<td>135,123</td>
<td>108</td>
<td>7,102</td>
<td>170,032</td>
<td>86</td>
<td>4,752</td>
<td>114,048</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FPS = 22</th>
<th>Storage Kbytes/frame</th>
<th>Kbytes/24 H</th>
<th>Quality = 2</th>
<th>Storage Kbytes/frame</th>
<th>Kbytes/24 H</th>
<th>Quality = 13</th>
<th>Storage Kbytes/frame</th>
<th>Kbytes/24 H</th>
<th>Quality = 21</th>
<th>Storage Kbytes/frame</th>
<th>Kbytes/24 H</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040x1530</td>
<td>148</td>
<td>11,722</td>
<td>291,318</td>
<td>202</td>
<td>15,998</td>
<td>383,962</td>
<td>326</td>
<td>26,097</td>
<td>625,393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1920x1200</td>
<td>128</td>
<td>10,138</td>
<td>243,302</td>
<td>176</td>
<td>13,839</td>
<td>334,641</td>
<td>293</td>
<td>23,206</td>
<td>658,934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600x1200</td>
<td>103</td>
<td>8,160</td>
<td>195,782</td>
<td>142</td>
<td>11,246</td>
<td>269,914</td>
<td>247</td>
<td>19,502</td>
<td>498,496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1280x1024</td>
<td>97</td>
<td>7,662</td>
<td>184,378</td>
<td>134</td>
<td>10,813</td>
<td>254,707</td>
<td>233</td>
<td>18,454</td>
<td>442,888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>960x640</td>
<td>91</td>
<td>5,465</td>
<td>131,155</td>
<td>97</td>
<td>7,042</td>
<td>184,378</td>
<td>168</td>
<td>13,068</td>
<td>313,632</td>
<td></td>
<td></td>
</tr>
<tr>
<td>640x480</td>
<td>64</td>
<td>5,297</td>
<td>135,123</td>
<td>68</td>
<td>5,056</td>
<td>99,421</td>
<td>49</td>
<td>3,406</td>
<td>81,734</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Quality refers to JPEG compression. Therefore Quality = 21 refers to high quality image.

3. Why do I get a license warning?
 A license is only need if you need to achieve video. You can obtain a license file by contacting your distributor or contacting websales@arecontvision.com.

4. Why is my Arecont Vision camera not detected by the Camera Installer?
 If the camera is not detected it maybe because of the firewall settings. To allow Camera Installer access to the network the user should, configure the firewall properly. To configure the Windows
firewall, access the **Windows Security Center** in the Windows **Control Panel**, and then click on **Windows Firewall**.

In the Windows Firewall window (Figure 33), click the **Exceptions** tab and add AV programs (AV Installer, AV Manager, and AV Video System) to the list of exceptions. Once the selections have been made click **OK**, and re-run the Camera Installer. If the Camera Installer still cannot find the camera make sure that there are no hardware firewalls in the gateways and routers on your network.

5. **Which DVRs support AV cameras?**

 There are several DVRs that support Arecont Vision cameras. A few examples are Bosch, March networks, and Sanyo DVRs. Please visit our website www.arecontvision.com for the latest updates.

6. **Can I update all my cameras with the same version of firmware?**

 There are several types of firmware update files. The camera model(s) is listed in the update file name.
7. How do I find out what version of software is installed and what are the IP and MAC addresses of my cameras?

This information is displayed in the **About** dialog (Figure 34). To open the **About** dialog, right click mouse and select **About**.

8. What is the cost of an Arecont Vision camera?

The cost varies from camera to camera but for unparallel clarity our prices are unbeatable. Almost all cameras have MSRP well below $1000. Visit us online at http://www.arecontvision.com/buy.html. Fill out the form and our sales staff will contact you.

9. Is there a third party software that can be used?

Arecont Vision cameras are supported by many third-party software packages. Contact websales@arecontvision.com for an updated list or visit www.arecontvision.com.
10. When should the user choose auto-iris option?

Many AV cameras support auto-iris option. These cameras are: AV1300-AI, AV2100-AI, AV3100-AI and AV5100-AI. Auto-iris option allows keeping the lens optimally closed when there is sufficient scene illumination, providing good depth of focus. When the illumination diminishes the camera opens the lens, allowing more light to reach the sensor, thus extending the sensitivity range of the camera. Auto-iris option should only be used for outdoor applications, where there is a large variation in illumination conditions. In many applications the auto-iris is unnecessary. It is important to keep in mind that the best image quality will be achieved with megapixel lenses. The auto-iris lenses available on the market today are not megapixel and will yield the images that are less crisp than those that can be obtained with manual megapixel lens.

11. What adjustments can be made to reduce the motion blur?

The shutter speed is automatically controlled by the camera. The motion blur may occur when the camera operates slow shutter speeds (long exposure times). This may happen when the scene is relatively dark. AV cameras provide a number of options that allow the user to control auto-exposure behavior when the illumination is low.

The user can set the preferred exposure time that the camera will attempt to maintain as long as illumination level allows. This setting essentially allows the user to choose the tradeoff between gains and exposure time at reduced light levels. There are 3 basic settings: Speed, Balance, and Quality (Figure 35). These settings can be selected from “Low Light Mode” menu Mode list. Speed setting will result in higher image noise but will attempt to maintain 10ms exposure time for as long as possible, reducing motion artifacts. Quality setting will maintain 40 ms exposure time, resulting in low-noise image with some motion blur in low light. Balanced setting is in between.

There are also two special modes, High Speed and MoonLight™ that can be used for very fast moving targets and very low illumination, respectively. High Speed mode allows the user to specify fixed exposure time in terms of milliseconds (from 1 to 80). While this will allow crisp video of fast moving vehicles, the side effect of this setting is that low-light performance of the camera will be significantly worse (up to 800 times) than in default mode. Therefore, High Speed should only be used for well lit scenes.

The other special mode, MoonLight™ implements long exposure times (up to 0.5 seconds) in combination with proprietary noise cancellation technology. This mode allows viewing under extremely low illumination conditions. It is important to note, that MoonLight™ is NOT digital frame
integration and will offer significantly better image quality than cameras that employ digital frame integration. However, the motion blur will still be significant.

Setting the Low Light Mode to Speed is the first thing to do to eliminate the motion blur. If that doesn't produce enough improvement, the user may want to open the lens aperture more to allow more light in. The user may also want to consider going with the camera equipped with auto-iris lens - the lens will open automatically as illumination diminishes. If that is not sufficient, the user may want to consider using lower resolution camera. For example, 2-megapixel AV2100 has larger pixels and has better low-light sensitivity than the 3-mega pixel product, AV3100. If that still does not yield sufficient low-light performance then, the user should consider AV3130 day-night camera that uses monochrome sensor in low light conditions and is sensitive to 0.00 lux.

12. What information can I provide to AV customer support for a faster response to my issues?
 AV Camera MAC address and firmware release (shown in the About dialog box).
 Switch or POE model number.
 Type of network cable eg Cat 5e (min and max distance of run)
Type of power used (VDC, milliamps, Watts)

Computer Information:
- PC Model number
- 100base-T or Gigabit card
- CPU speed
- Hard disk size, and available free space.

Please provide the lmlog.dat file and localmachine.ini file
This file can be found on XP C:\Documents and Settings\All Users\Application Data\Video and Vista C:\Users\(YourUserName)\ApplicationData\Video Application
Or C:\Users\(YourUserName)\AppData\Local\VirtualStore\ProgramData\Video Application

13. **How do I disable the auto startup of the Arecont Vision software?**
 Click on Advanced on the AV Software Settings and uncheck "Auto – Startup".

14. **Is there a link to view live video from your camera systems?**
 We have three sites that can be accessed. Please contact our sales team at sales@arecontvision.com

15. **What is the maximum physical distance between computer and AV camera?**
 Typical Ethernet 100Base-T has a maximum distance of 100 meters (330 feet). The range can be increased by using the standard powered mid-span switch. Alternatively, 3Com IntelliJack Switch that accepts the power over Ethernet can be used to avoid the need to provide mid-span power supply.

16. **Are AV cameras RoHS compliant?**

17. **Can we mount a motorized zoom lens from another supplier?**
 Motorized zoom is not supported by the camera, but you can mount the external PTZ unit with independent controls.

18. **How do I access the Arecont Vision MegaPixel® WEB camera home page to view my cameras remotely?**
 Simply type in http://200.168.100.10/index.html. Replace bold (200.168.100.10) IP address with actual camera IP address.
19. Is the MegaPixel® WEB camera home page compatible with Mozilla Firefox?
You can view photo, video, and adjust the camera setting via the internet using Mozilla Firefox.

20. Does your software include motion detection?
Our software does include motion detection. However, most AV cameras also support on-board motion detection that, in contrast to software motion detection, does not take up CPU cycles. The "on camera" feature was implemented to reduce the overall network bandwidth so the camera itself will not send images until motion is detected. The user can adjust 3 motion detection sensitivity settings and specify up to 64 motion detection zones.

21. Can image archival be configured for cyclic recording?
AV100 software will overwrite old files every few minutes once the available disk space reaches a limit value that the end user can set. By default the value is 15GB but can be changed manually by editing the [storage] field of LocalMachine.ini file located in C:\Program Files\Arecont Vision\Video Surveillance.

22. How can I register with the "Developer Support Portal"?
Access to Developer Support Portal requires an NDA (Non-Disclosure Agreement, to be signed in paper form prior to obtaining access). More information can be provided through websales@arecontvision.com

23. How do the Arecont Vision cameras utilize PTZ (Pan, Tilt, Zoom)?
There is no mechanical PTZ. However AV cameras have multi-megapixel resolution and allow instantaneous electronic pan, tilt and zoom by specifying PTZ window coordinates. Multiple users can each select their own windows, as though each user independently controls the PTZ.

24. How can I get the AV100 built-in web server to work?
AV100 software has built-in web server that allows multi-user remote access to live video and video archives. This web server can be accessed from IE browser by typing:

HTTP://ip_address:port/guix.htm

where ip_address is the IP addresses of the computer running AV100 and the port corresponds to the port number set in the Remote Viewing menu. Please note that in order to access AV100 server remotely the user should enable the server by checking the Allow Remote Viewing field and select the port that is not blocked by the firewall. For increased security the default value of remote access port is 4250. The user has the option to select any available port. Often the port 80 (HTTP port) is most likely to be open on the secured network as it is used by default by IE browser.
25. **What is the night performance (Lux) of the AV3130 camera?**
 In low-light conditions AV3130 switches to 1.3 megapixel monochrome sensor resulting in good image quality down to 0.01 Lux AV3130 is also sensitive to near-infrared illumination – allowing the use of standard infrared illuminators as the light source.

26. **When I attempt to update the firmware on the AV camera with the firmware update option I receive the "Ack Timeout" message. Why do I get this error?**
 If you get the timeout message take the following steps:
 - Make sure that no application is requesting the images from the camera during the update
 - Make sure that the camera is connected via switch and not with direct cross-over cable
 - Re-run AV Installer prior to the upgrade to make sure that the camera is accessible and there is no IP conflict

27. **Do the AV cameras support multicast?**
 No, AV cameras do not support multicast.

28. **Are there any moving mechanical parts in the AV3130?**
 The AV3130 does not have any mechanical moving parts inside.

29. **What is Ethereal and where can I get it?**
 Ethereal is a network protocol analyzer. It can be obtained through their web site at http://www.ethereal.com/

30. **How do I reset the camera settings to the original factory configuration?**
 Resetting the AV camera to its original configuration can be achieved through the built-in web server. To reset the AV camera open IE explorer and type as http://ip_address/set?params=factory
 Replace ip_address with the actual camera IP address.
Chapter V - Regulatory Compliance

FCC Compliance Statement

All AV cameras have been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his/her own expense.

Modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment under FCC rules.

1. It is suggested that the user use shielded CAT6 cables to comply with FCC rules.
2. It is suggested that the user use power-over-Ethernet supply
3. To comply with FCC rules when using auto-iris with AV1300, AV2100 and AV3100 it is also suggested using a ferrite common mode choke Fair-Rite # 0444164281 with 1 ½ turns place on the auto-iris lens cable three centimeters from the lens.

Terms and Conditions of Sale

1. Terms and Conditions. This sale is subject to the terms and conditions set forth below, which supersede any and all terms and conditions set forth in any documents issued by Purchaser, including Purchaser's purchase order. ANY ADDITIONAL, DIFFERENT OR CONFLICTING TERMS AND CONDITIONS HEREBY ARE OBJECTED TO BY ARECONT VISION, LLC (“AV”), AND SHALL BE OF NO FORCE AND EFFECT. No waiver or amendment of these terms and conditions shall be binding on AV unless made in writing expressly stating that it is such a waiver or amendment and signed by AV.

2. Limited Warranty. AV warrants to Purchaser (and only Purchaser) (the “Limited Warranty”), that: (a) each Product shall be free from material defects in material and workmanship for a period of twelve (12) months from the date of shipment (the “Warranty Period”); (b) during the Warranty Period,
Products will materially conform with the specification in the applicable documentation; (c) all licensed programs accompanying the Product (the “Licensed Programs”) will materially conform with applicable specifications. Notwithstanding the preceding provisions, AV shall have no obligation or responsibility with respect to any Product that (i) has been modified or altered without AV’s written authorization; (ii) has not been used in accordance with applicable documentation; (iii) has been subjected to unusual stress, neglect, misuse, abuse, improper storage, testing or connection; or unauthorized repair; or (iv) is no longer covered under the Warranty Period. AV MAKE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, OTHER THAN THE EXPRESS LIMITED WARRANTIES MADE BY AV ABOVE, AND AV HEREBY SPECIFICALLY DISCLAIMS ALL OTHER EXPRESS, STATUTORY AND IMPLIED WARRANTIES AND CONDITIONS, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT AND THE IMPLIED CONDITION OF SATISFACTORY QUALITY. ALL LICENSED PROGRAMS ARE LICENSED ON AN “AS IS” BASIS WITHOUT WARRANTY. AV DOES NOT WARRANT THAT (I) THE OPERATION OF THE PRODUCTS OR PARTS WILL BE UNINTERRUPTED OR ERROR FREE; (II) THE PRODUCTS OR PARTS AND DOCUMENTATION WILL MEET THE END USERS’ REQUIREMENTS; (III) THE PRODUCTS OR PARTS WILL OPERATE IN COMBINATIONS AND CONFIGURATIONS SELECTED BY THE END USER; OTHER THAN COMBINATIONS AND CONFIGURATIONS WITH PARTS OR OTHER PRODUCTS AUTHORIZED BY AV OR (IV) THAT ALL LICENSED PROGRAM ERRORS WILL BE CORRECTED.

3. Exclusive Remedy; Limitation of Liability. Purchaser’s exclusive remedy for a breach of the Limited Warranty shall be limited to repair or replacement of, or refund for, the non-conforming Product (at AV’s sole option). Product returned to AV for non-compliance with this Limited Warranty shall be returned in accordance with the “Rejection/Return” provisions below. Any refund shall be equal to the actual purchase price for the applicable Product. IN NO EVENT SHALL AV BE LIABLE TO PURCHASER FOR ANY INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES RESULTING FROM AV’S PERFORMANCE OF FAILURE TO PERFORM, WHETHER DUE TO BREACH OF CONTRACT OR WARRANTY, NEGLIGENCE OR OTHERWISE.

4. Repaired or Replaced Product. The warranty for repaired or replaced Product shall be limited in scope to the warranty set forth above, and shall have a duration of the greater of (i) the remaining Warranty Period in the original warranty that was applicable to the original Product, extended by the time elapsed between AV receiving notice of the non-conformity and Purchaser’s receipt of the repaired or replaced Product; or (ii) ninety (90) days following delivery to Purchaser’s of the repaired or replaced Product.
5. **Shipment and Risk of Loss.** All Products shipped by AV shall be packaged in AV’s shipping cartons so as to prevent damage and shall be delivered to a common carrier FOB AV’s facility in Altadena, CA, USA, at which time risk of loss shall pass to Purchaser. All freight, insurance, and other shipping expenses, as well as expenses for any special packing requested by Purchaser and provided by AV, shall be paid by Purchaser.

6. **Licensed Programs.** Upon the sale of any Product to Purchaser, AV grants to such Purchaser a non-exclusive, non-transferable, royalty-free license to (i) install copies of the Licensed Programs in appropriate hardware; and (ii) use the Licensed Programs for their intended purpose. Purchaser may make copies of any Licensed Programs only as necessary to exercise its rights authorized hereunder and as necessary to backup the Licensed Programs.

7. **Payment.** Payment shall be in U.S. Dollars, and shall be due and payable in accordance with the terms set forth on the applicable AV Quotation. Payment shall be in an amount equal to the purchase price for the applicable Product plus all applicable taxes, shipping charges, and other charges to be borne by Purchaser.

8. **Rejection/Return.** All Products shall be deemed accepted by Purchaser twenty (20) business days after receipt unless Purchaser rejects such Product within such twenty (20) business day period for failure to comply with the Limited Warranty set forth in above. Upon such rejection, Purchaser shall immediately notify AV of the rejection and shall, at AV’s option, return the Product or allow AV to inspect the rejected Product and shall follow AV’s instructions regarding disposition of the rejected Product. Prior to the return of any Product to AV as provided for hereunder, Purchaser shall obtain from AV’s Technical Support Department a Return Material Authorization (“RMA”) number. Within ten (10) business days after receiving an RMA number for the Product, Purchaser shall package the Product in its original packing material or an equivalent and return such Product to AV or such other location as AV may designate in writing. AV shall bear the cost of freight and insurance for the return to AV. Purchaser shall enclose with the returned Product the applicable RMA form, and any other documentation or information requested by AV. AV may refuse to accept returns of any Product not packed and shipped as provided in this paragraph. Upon verification that the Product does not comply with the Limited Warranty, AV shall repair, replace, or provide a refund for such Product, at AV’s option, no later than thirty (30) days after the time AV receives from Purchaser written notice of such return or rejection. AV shall be responsible for returning, at AV’s cost, repaired or replaced Products to Purchaser.
9. **General Provisions.** Notwithstanding any other provision hereof, performance by AV shall be excused to the extent that performance is rendered commercially unreasonable by acts of God, war, fire, flood, riot, power failure, embargo, material shortages, strikes, governmental acts, man-made or natural disasters, earthquakes, failure or limitation of supply, or any other reason where failure to perform is beyond the reasonable control and not caused by the negligence of AV. The time for performance shall be extended for the time period lost due to the delay. This Agreement shall be governed by and construed under the laws of the State of California, USA, without reference to conflict of laws. These terms and conditions, including those on the face page hereof (if any), set forth the entire agreement and understanding of AV and Purchaser with respect to the sale and distribution of Products, the Licensed Products and Parts and supersede all prior or contemporaneous agreements relating thereto, written or oral, between the parties. Purchaser may not assign its rights or delegate its obligations hereunder without the express written consent of AV. Any assignment by Purchaser without such consent shall constitute a breach hereof by Purchaser.